1,098 research outputs found
Evaluation of an Online LGBTQ Patient Care Education Module for Primary Care Providers
PURPOSE:
The purpose of this pilot study was to evaluate the effectiveness of an online educational module about LGBTQ healthcare topics for primary care providers in Kentucky. The study focused on the changes in knowledge, attitudes and self-efficacy in topics related to LGBTQ patients.
METHODS:
This study was a one-group pre/post intervention design to evaluate the knowledge, attitudes and self- efficacy of providers regarding primary care topics for the LGBTQ community before and after completing a training module on LGBTQ healthcare topics. Subjects were recruited via the KCNPNM Listserv over a 2-week period to participate in the interactive, online audio/visual module. The module is an original presentation using evidenced based guidelines tailored to adapt to common primary care scenarios involving LGBTQ patients.
RESULTS:
There were statistically significant changes in participant (N=47) attitudes regarding LGBTQ patient discrimination in healthcare settings, and confidence in taking a comprehensive sexual history. There was also an increase in mean knowledge scores from pre (0.58) to post (0.71). There were improvements in other categories of attitudes and self-efficacy, but the results were not statistically significant.
DISCUSSION:
This effective training provides the opportunity for advancement in the cultural competency of primary care providers in Kentucky, which is desperately needed to improve the health outcomes of the selected vulnerable population. Future projects can focus on LGBTQ patient health outcomes and satisfaction of care following cultural competency implementation
Abundances in Turn-off Stars in the Old, Metal-Rich Open Cluster, NGC 6791
Open clusters have long been used to illuminate both stellar evolution and
Galactic evolution. The oldest clusters, though rather rare, can reveal the
chemical and nucleosynthetic processes early in the history of the Galaxy. We
have studied two turn-off stars in the old, metal-rich open cluster, NGC 6791.
The Keck + HIRES spectra have a resolution of 45,000 and signal-to-noise ratios
of 40 per pixel. We confirm the high value for [Fe/H] finding +0.30 0.08,
in agreement with earlier results from evolved stars in other parts of the HR
diagram. We have also determined abundances for Na, Si, Ca, Ti, Cr, Ni, Y and
Ba. These are compared to a sample of old, metal-rich field stars. With the
probable exception of enhanced Ni in the cluster stars, the field and cluster
stars show similar abundances of the elements. Model predictions show that the
Ni enhancement could result from enrichment of the pre-cluster gas by SN Ia.
Orbital evidence indicates that NGC 6791 could have originated near the inner
regions of the Galaxy where the metallicity is generally higher than it is in
the disk or halo. Subsequent perturbations and migrations may have resulted in
its current heliocentric distance of 4 kpc and 1 kpc above the Galactic plane.Comment: 10 pages, 4 figures, 7 tables accepted by The Astronomical Journal
for June, 200
uvby(-) photometry of high-velocity and metal-poor stars X. Stars of very low metal abundance: observations, reddenings, metallicities, classifications, distances, and relative ages
uvby(--) photometry has been obtained for an additional 411 very
metal-poor stars selected from the HK survey, and used to derive basic
parameters such as interstellar reddenings, metallicities, photometric
classifications, distances, and relative ages... These very metal-poor stars
are compared to M92 in the c_0,(b-y)_0 diagram, and evidence is seen for field
stars 1-3 Gyrs younger than this globular cluster. The significance of these
younger very metal-poor stars is discussed in the context of Galactic
evolution, mentioning such possibilities as hierarchical
star-formation/mass-infall of very metal-poor material and/or accretion events
whereby this material has been acquired from other (dwarf) galaxies with
different formation and chemical-enrichment historiesComment: 20 pages, 11 figures, and 9 table
Measurement of the cross-section and charge asymmetry of bosons produced in proton-proton collisions at TeV with the ATLAS detector
This paper presents measurements of the and cross-sections and the associated charge asymmetry as a
function of the absolute pseudorapidity of the decay muon. The data were
collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with
the ATLAS experiment at the LHC and correspond to a total integrated luminosity
of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements
varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the
1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured
with an uncertainty between 0.002 and 0.003. The results are compared with
predictions based on next-to-next-to-leading-order calculations with various
parton distribution functions and have the sensitivity to discriminate between
them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables,
submitted to EPJC. All figures including auxiliary figures are available at
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13
Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in √s=13 TeV pp collisions with the ATLAS detector
A search for supersymmetry through the pair production of electroweakinos with mass splittings near the electroweak scale and decaying via on-shell W and Z bosons is presented for a three-lepton final state. The analyzed proton-proton collision data taken at a center-of-mass energy of √s=13 TeV were collected between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 139 fb−1. A search, emulating the recursive jigsaw reconstruction technique with easily reproducible laboratory-frame variables, is performed. The two excesses observed in the 2015–2016 data recursive jigsaw analysis in the low-mass three-lepton phase space are reproduced. Results with the full data set are in agreement with the Standard Model expectations. They are interpreted to set exclusion limits at the 95% confidence level on simplified models of chargino-neutralino pair production for masses up to 345 GeV
Leukocyte Tyrosine Kinase Functions in Pigment Cell Development
A fundamental problem in developmental biology concerns how multipotent precursors choose specific fates. Neural crest cells (NCCs) are multipotent, yet the mechanisms driving specific fate choices remain incompletely understood. Sox10 is required for specification of neural cells and melanocytes from NCCs. Like sox10 mutants, zebrafish shady mutants lack iridophores; we have proposed that sox10 and shady are required for iridophore specification from NCCs. We show using diverse approaches that shady encodes zebrafish leukocyte tyrosine kinase (Ltk). Cell transplantation studies show that Ltk acts cell-autonomously within the iridophore lineage. Consistent with this, ltk is expressed in a subset of NCCs, before becoming restricted to the iridophore lineage. Marker analysis reveals a primary defect in iridophore specification in ltk mutants. We saw no evidence for a fate-shift of neural crest cells into other pigment cell fates and some NCCs were subsequently lost by apoptosis. These features are also characteristic of the neural crest cell phenotype in sox10 mutants, leading us to examine iridophores in sox10 mutants. As expected, sox10 mutants largely lacked iridophore markers at late stages. In addition, sox10 mutants unexpectedly showed more ltk-expressing cells than wild-type siblings. These cells remained in a premigratory position and expressed sox10 but not the earliest neural crest markers and may represent multipotent, but partially-restricted, progenitors. In summary, we have discovered a novel signalling pathway in NCC development and demonstrate fate specification of iridophores as the first identified role for Ltk
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
Multiple populations in globular clusters. Lessons learned from the Milky Way globular clusters
Recent progress in studies of globular clusters has shown that they are not
simple stellar populations, being rather made of multiple generations. Evidence
stems both from photometry and spectroscopy. A new paradigm is then arising for
the formation of massive star clusters, which includes several episodes of star
formation. While this provides an explanation for several features of globular
clusters, including the second parameter problem, it also opens new
perspectives about the relation between globular clusters and the halo of our
Galaxy, and by extension of all populations with a high specific frequency of
globular clusters, such as, e.g., giant elliptical galaxies. We review progress
in this area, focusing on the most recent studies. Several points remain to be
properly understood, in particular those concerning the nature of the polluters
producing the abundance pattern in the clusters and the typical timescale, the
range of cluster masses where this phenomenon is active, and the relation
between globular clusters and other satellites of our Galaxy.Comment: In press (The Astronomy and Astrophysics Review
Open science discovery of potent noncovalent SARS-CoV-2 main protease inhibitors
INTRODUCTION
COVID-19 became a global pandemic partially as a result of the lack of easily deployable, broad-spectrum oral antivirals, which complicated its containment. Even endemically, and with effective vaccinations, it will continue to cause acute disease, death, and long-term sequelae globally unless there are accessible treatments. COVID-19 is not an isolated event but instead is the latest example of a viral pandemic threat to human health. Therefore, antiviral discovery and development should be a key pillar of pandemic preparedness efforts.
RATIONALE
One route to accelerate antiviral drug discovery is the establishment of open knowledge bases, the development of effective technology infrastructures, and the discovery of multiple potent antivirals suitable as starting points for the development of therapeutics. In this work, we report the results of the COVID Moonshot—a fully open science, crowdsourced, and structure-enabled drug discovery campaign—against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro). This collaboration may serve as a roadmap for the potential development of future antivirals.
RESULTS
On the basis of the results of a crystallographic fragment screen, we crowdsourced design ideas to progress from fragment to lead compounds. The crowdsourcing strategy yielded several key compounds along the optimization trajectory, including the starting compound of what became the primary lead series. Three additional chemically distinct lead series were also explored, spanning a diversity of chemotypes.
The collaborative and highly automated nature of the COVID Moonshot Consortium resulted in >18,000 compound designs, >2400 synthesized compounds, >490 ligand-bound x-ray structures, >22,000 alchemical free-energy calculations, and >10,000 biochemical measurements—all of which were made publicly available in real time. The recently approved antiviral ensitrelvir was identified in part based on crystallographic data from the COVID Moonshot Consortium.
This campaign led to the discovery of a potent [median inhibitory concentration (IC50) = 37 ± 2 nM] and differentiated (noncovalent and nonpeptidic) lead compound that also exhibited potent cellular activity, with a median effective concentration (EC50) of 64 nM in A549-ACE2-TMPRSS2 cells and 126 nM in HeLa-ACE2 cells without measurable cytotoxicity. Although the pharmacokinetics of the reported compound is not yet optimal for therapeutic development, it is a promising starting point for further antiviral discovery and development.
CONCLUSION
The success of the COVID Moonshot project in producing potent antivirals, building open knowledge bases, accelerating external discovery efforts, and functioning as a useful information-exchange hub is an example of the potential effectiveness of open science antiviral discovery programs. The open science, patent-free nature of the project enabled a large number of collaborators to provide in-kind support, including synthesis, assays, and in vitro and in vivo experiments. By making all data immediately available and ensuring that all compounds are purchasable from Enamine without the need for materials transfer agreements, we aim to accelerate research globally along parallel tracks. In the process, we generated a detailed map of the structural plasticity of Mpro, extensive structure-activity relationships for multiple chemotypes, and a wealth of biochemical activity data to spur further research into antivirals and discovery methodologies. We hope that this can serve as an alternative model for antiviral discovery and future pandemic preparedness.
Further, the project also showcases the role of machine learning, computational chemistry, and high-throughput structural biology as force multipliers in drug design. Artificial intelligence and machine learning algorithms help accelerate chemical synthesis while balancing multiple competing molecular properties. The design-make-test-analyze cycle was accelerated by these algorithms combined with planetary-scale biomolecular simulations of protein-ligand interactions and rapid structure determination
- …