4,471 research outputs found

    Bursts in discontinuous Aeolian saltation

    Full text link
    Close to the onset of Aeolian particle transport through saltation we find in wind tunnel experiments a regime of discontinuous flux characterized by bursts of activity. Scaling laws are observed in the time delay between each burst and in the measurements of the wind fluctuations at the fluid threshold Shields number θc\theta_c. The time delay between each burst decreases on average with the increase of the Shields number until sand flux becomes continuous. A numerical model for saltation including the wind-entrainment from the turbulent fluctuations can reproduce these observations and gives insight about their origin. We present here also for the first time measurements showing that with feeding it becomes possible to sustain discontinuous flux even below the fluid threshold

    Friedmann cosmology with decaying vacuum density

    Full text link
    Among the several proposals to solve the incompatibility between the observed small value of the cosmological constant and the huge value obtained by quantum field theories, we can find the idea of a decaying vacuum energy density, leading from high values at early times of universe evolution to the small value observed nowadays. In this paper we consider a variation law for the vacuum density recently proposed by Schutzhold on the basis of quantum field estimations in the curved, expanding background, characterized by a vacuum density proportional to the Hubble parameter. We show that, in the context of an isotropic and homogeneous, spatially flat model, the corresponding solutions retain the well established features of the standard cosmology, and, in addition, are in accordance with the observed cosmological parameters. Our scenario presents an initial phase dominated by radiation, followed by a dust era long enough to permit structure formation, and by an epoch dominated by the cosmological term, which tends asymptotically to a de Sitter universe. Taking the matter density equals to half of the vacuum energy density, as suggested by observation, we obtain a universe age given by Ht = 1.1, and a decelerating parameter equals to -1/2.Comment: Accepted for publication in General Relativity and Gravitatio

    Bandlimited approximations to the truncated Gaussian and applications

    Full text link
    In this paper we extend the theory of optimal approximations of functions f:RRf: \R \to \R in the L1(R)L^1(\R)-metric by entire functions of prescribed exponential type (bandlimited functions). We solve this problem for the truncated and the odd Gaussians using explicit integral representations and fine properties of truncated theta functions obtained via the maximum principle for the heat operator. As applications, we recover most of the previously known examples in the literature and further extend the class of truncated and odd functions for which this extremal problem can be solved, by integration on the free parameter and the use of tempered distribution arguments. This is the counterpart of the work \cite{CLV}, where the case of even functions is treated.Comment: to appear in Const. Appro

    Globalization and inequality in Latin America

    Get PDF
    We survey the recent literature studying the effects of globalization on inequality in Latin America. Our focus is on research emerging from the late 2000s onward, with an emphasis on empirical work considering new mechanisms, studying new dimensions of inequality, and developing new methodologies to capture the many facets of globalization’s relationship to inequality. After summarizing both design-based and quantitative work in this area, we propose directions for future work. Our overarching recommendation is that researchers develop unifying frameworks to help synthesize the results of individual studies that focus on distinct aspects of globalization’s relationship to inequality

    A Godel-Friedman cosmology?

    Full text link
    Based on the mathematical similarity between the Friedman open metric and Godel's metric in the case of nearby distances, we investigate a new scenario for the Universe's evolution, where the present Friedman universe originates from a primordial Godel universe by a phase transition during which the cosmological constant vanishes. Using Hubble's constant and the present matter density as input, we show that the radius and density of the primordial Godel universe are close, in order of magnitude, to the present values, and that the time of expansion coincides with the age of the Universe in the standard Friedman model. In addition, the conservation of angular momentum provides, in this context, a possible origin for the rotation of galaxies, leading to a relation between the masses and spins corroborated by observational data.Comment: Extended version, accepted for publication in Physical Review

    Spontaneous emergence of spatial patterns ina a predator-prey model

    Full text link
    We present studies for an individual based model of three interacting populations whose individuals are mobile in a 2D-lattice. We focus on the pattern formation in the spatial distributions of the populations. Also relevant is the relationship between pattern formation and features of the populations' time series. Our model displays travelling waves solutions, clustering and uniform distributions, all related to the parameters values. We also observed that the regeneration rate, the parameter associated to the primary level of trophic chain, the plants, regulated the presence of predators, as well as the type of spatial configuration.Comment: 17 pages and 15 figure

    High scale impact in alignment and decoupling in two-Higgs doublet models

    Get PDF
    The two-Higgs doublet model (2HDM) provides an excellent benchmark to study physics beyond the Standard Model (SM). In this work we discuss how the behaviour of the model at high energy scales causes it to have a scalar with properties very similar to those of the SM -- which means the 2HDM can be seen to naturally favor a decoupling or alignment limit. For a type II 2HDM, we show that requiring the model to be theoretically valid up to a scale of 1 TeV, by studying the renormalization group equations (RGE) of the parameters of the model, causes a significant reduction in the allowed magnitude of the quartic couplings. This, combined with BB-physics bounds, forces the model to be naturally decoupled. As a consequence, any non-decoupling limits in type II, like the wrong-sign scenario, are excluded. On the contrary, even with the very constraining limits for the Higgs couplings from the LHC, the type I model can deviate substantially from alignment. An RGE analysis similar to that made for type II shows, however, that requiring a single scalar to be heavier than about 500 GeV would be sufficient for the model to be decoupled. Finally, we show that not only a 2HDM where the lightest of the CP-even scalars is the 125 GeV one does not require new physics to be stable up to the Planck scale but this is also true when the heavy CP-even Higgs is the 125 GeV and the theory has no decoupling limit for the type I model.Comment: 28 pages, 19 figure
    corecore