6,215 research outputs found

    A Model for Cultivating Global Engagement Beyond Academic Tourism

    Get PDF
    The message to environmental scholars in Pope Francis’ Encyclical “Laudato Si” is clear: contributions from Science, Technology, Engineering, and Mathematics (STEM) must serve to inform both local and international conversations as well as connect learning communities in developed and developing nations. In the hope of fostering international opportunities that challenge U.S. students to link their academic degrees with social justice elements that calibrate them to the historical reality the overwhelming majority of the world experiences, we outline a teacher-scholar model that serves as a tool for the advancement of social and environmental justice issues in developing countries

    The valuation of clean spread options: linking electricity, emissions and fuels

    Get PDF
    The purpose of the paper is to present a new pricing method for clean spread options, and to illustrate its main features on a set of numerical examples produced by a dedicated computer code. The novelty of the approach is embedded in the use of a structural model as opposed to reduced-form models which fail to capture properly the fundamental dependencies between the economic factors entering the production process

    Relativistic kinematics beyond Special Relativity

    Full text link
    In the context of departures from Special Relativity written as a momentum power expansion in the inverse of an ultraviolet energy scale M, we derive the constraints that the relativity principle imposes between coefficients of a deformed composition law, dispersion relation, and transformation laws, at first order in the power expansion. In particular, we find that, at that order, the consistency of a modification of the energy-momentum composition law fixes the modification in the dispersion relation. We therefore obtain the most generic modification of Special Relativity that preserves the relativity principle at leading order in 1/M.Comment: Version with minor corrections, to appear in Phys. Rev.

    Matter-antimatter asymmetry without departure from thermal equilibrium

    Full text link
    We explore the possibility of baryogenesis without departure from thermal equilibrium. A possible scenario is found, though it contains strong constraints on the size of the CPTCPT violation (CPTVCPTV) effects and on the role of the BB (baryon number) nonconserving interactions which are needed for it.Comment: Revtex, 4page

    The Master Equation for Large Population Equilibriums

    Get PDF
    We use a simple N-player stochastic game with idiosyncratic and common noises to introduce the concept of Master Equation originally proposed by Lions in his lectures at the Coll\`ege de France. Controlling the limit N tends to the infinity of the explicit solution of the N-player game, we highlight the stochastic nature of the limit distributions of the states of the players due to the fact that the random environment does not average out in the limit, and we recast the Mean Field Game (MFG) paradigm in a set of coupled Stochastic Partial Differential Equations (SPDEs). The first one is a forward stochastic Kolmogorov equation giving the evolution of the conditional distributions of the states of the players given the common noise. The second is a form of stochastic Hamilton Jacobi Bellman (HJB) equation providing the solution of the optimization problem when the flow of conditional distributions is given. Being highly coupled, the system reads as an infinite dimensional Forward Backward Stochastic Differential Equation (FBSDE). Uniqueness of a solution and its Markov property lead to the representation of the solution of the backward equation (i.e. the value function of the stochastic HJB equation) as a deterministic function of the solution of the forward Kolmogorov equation, function which is usually called the decoupling field of the FBSDE. The (infinite dimensional) PDE satisfied by this decoupling field is identified with the \textit{master equation}. We also show that this equation can be derived for other large populations equilibriums like those given by the optimal control of McKean-Vlasov stochastic differential equations. The paper is written more in the style of a review than a technical paper, and we spend more time and energy motivating and explaining the probabilistic interpretation of the Master Equation, than identifying the most general set of assumptions under which our claims are true

    U(1) Noncommutative Gauge Fields and Magnetogenesis

    Full text link
    The connection between the Lorentz invariance violation in the lagrangean context and the quantum theory of noncommutative fields is established for the U(1) gauge field. The modified Maxwell equations coincide with other derivations obtained using different procedures. These modified equations are interpreted as describing macroscopic ones in a polarized and magnetized medium. A tiny magnetic field (seed) emerges as particular static solution that gradually increases once the modified Maxwell equations are solved as a self-consistent equations system.Comment: 4 page

    Guidelines and recommendations on yeast cell death nomenclature

    Get PDF
    lucidating the biology of yeast in its full complexity has major implications for science, medicine and industry. One of the most critical processes determining yeast life and physiology is cel- lular demise. However, the investigation of yeast cell death is a relatively young field, and a widely accepted set of concepts and terms is still missing. Here, we propose unified criteria for the defi- nition of accidental, regulated, and programmed forms of cell death in yeast based on a series of morphological and biochemical criteria. Specifically, we provide consensus guidelines on the differ- ential definition of terms including apoptosis, regulated necrosis, and autophagic cell death, as we refer to additional cell death rou- tines that are relevant for the biology of (at least some species of) yeast. As this area of investigation advances rapidly, changes and extensions to this set of recommendations will be implemented in the years to come. Nonetheless, we strongly encourage the au- thors, reviewers and editors of scientific articles to adopt these collective standards in order to establish an accurate framework for yeast cell death research and, ultimately, to accelerate the pro- gress of this vibrant field of research

    About Locality and the Relativity Principle Beyond Special Relativity

    Full text link
    Locality of interactions is an essential ingredient of Special Relativity. Recently, a new framework under the name of relative locality \cite{AmelinoCamelia:2011bm} has been proposed as a way to consider Planckian modifications of the relativistic dynamics of particles. We note in this paper that the loss of absolute locality is a general feature of theories beyond Special Relativity with an implementation of a relativity principle. We give an explicit construction of such an implementation and compare it both with the previously mentioned framework of relative locality and the so-called Doubly Special Relativity theories.Comment: 10 pages, no figure
    corecore