3 research outputs found

    Subjective Cognitive Decline Is Associated With Altered Default Mode Network Connectivity in Individuals With a Family History of Alzheimer's Disease

    Full text link
    Background: Both subjective cognitive decline (SCD) and a family history of Alzheimer's disease (AD) portend risk of brain abnormalities and progression to dementia. Posterior default mode network (pDMN) connectivity is altered early in the course of AD. It is unclear whether SCD predicts similar outcomes in cognitively normal individuals with a family history of AD. Methods: We studied 124 asymptomatic individuals with a family history of AD (age 64 ± 5 years). Participants were categorized as having SCD if they reported that their memory was becoming worse (SCD+). We used extensive neuropsychological assessment to investigate five different cognitive domain performances at baseline (n = 124) and 1 year later (n = 59). We assessed interconnectivity among three a priori defined ROIs: pDMN, anterior ventral DMN, medial temporal memory system (MTMS), and the connectivity of each with the rest of brain. Results: Sixty-eight (55%) participants reported SCD. Baseline cognitive performance was comparable between groups (all false discovery rate-adjusted p values >.05). At follow-up, immediate and delayed memory improved across groups, but the improvement in immediate memory was reduced in SCD+ compared with SCD− (all false discovery rate–adjusted p values <.05). When compared with SCD−, SCD+ subjects showed increased pDMN–MTMS connectivity (false discovery rate–adjusted p <.05). Higher connectivity between the MTMS and the rest of the brain was associated with better baseline immediate memory, attention, and global cognition, whereas higher MTMS and pDMN–MTMS connectivity were associated with lower immediate memory over time (all false discovery rate–adjusted p values <.05). Conclusions: SCD in cognitively normal individuals is associated with diminished immediate memory practice effects and a brain connectivity pattern that mirrors early AD-related connectivity failure

    The neurophysiological brain-fingerprint of Parkinson’s diseaseResearch in context

    Full text link
    Summary: Background: Research in healthy young adults shows that characteristic patterns of brain activity define individual “brain-fingerprints” that are unique to each person. However, variability in these brain-fingerprints increases in individuals with neurological conditions, challenging the clinical relevance and potential impact of the approach. Our study shows that brain-fingerprints derived from neurophysiological brain activity are associated with pathophysiological and clinical traits of individual patients with Parkinson’s disease (PD). Methods: We created brain-fingerprints from task-free brain activity recorded through magnetoencephalography in 79 PD patients and compared them with those from two independent samples of age-matched healthy controls (N = 424 total). We decomposed brain activity into arrhythmic and rhythmic components, defining distinct brain-fingerprints for each type from recording durations of up to 4 min and as short as 30 s. Findings: The arrhythmic spectral components of cortical activity in patients with Parkinson’s disease are more variable over short periods, challenging the definition of a reliable brain-fingerprint. However, by isolating the rhythmic components of cortical activity, we derived brain-fingerprints that distinguished between patients and healthy controls with about 90% accuracy. The most prominent cortical features of the resulting Parkinson’s brain-fingerprint are mapped to polyrhythmic activity in unimodal sensorimotor regions. Leveraging these features, we also demonstrate that Parkinson’s symptom laterality can be decoded directly from cortical neurophysiological activity. Furthermore, our study reveals that the cortical topography of the Parkinson’s brain-fingerprint aligns with that of neurotransmitter systems affected by the disease’s pathophysiology. Interpretation: The increased moment-to-moment variability of arrhythmic brain-fingerprints challenges patient differentiation and explains previously published results. We outline patient-specific rhythmic brain signaling features that provide insights into both the neurophysiological signature and symptom laterality of Parkinson’s disease. Thus, the proposed definition of a rhythmic brain-fingerprint of Parkinson’s disease may contribute to novel, refined approaches to patient stratification. Symmetrically, we discuss how rhythmic brain-fingerprints may contribute to the improved identification and testing of therapeutic neurostimulation targets. Funding: Data collection and sharing for this project was provided by the Quebec Parkinson Network (QPN), the Pre-symptomatic Evaluation of Novel or Experimental Treatments for Alzheimer’s Disease (PREVENT-AD; release 6.0) program, the Cambridge Centre for Aging Neuroscience (Cam-CAN), and the Open MEG Archives (OMEGA). The QPN is funded by a grant from Fonds de Recherche du QuĂ©bec - SantĂ© (FRQS). PREVENT-AD was launched in 2011 as a $13.5 million, 7-year public-private partnership using funds provided by McGill University, the FRQS, an unrestricted research grant from Pfizer Canada, the Levesque Foundation, the Douglas Hospital Research Centre and Foundation, the Government of Canada, and the Canada Fund for Innovation. The Brainstorm project is supported by funding to SB from the NIH (R01-EB026299-05). Further funding to SB for this study included a Discovery grant from the Natural Sciences and Engineering Research Council of Canada of Canada (436355-13), and the CIHR Canada research Chair in Neural Dynamics of Brain Systems (CRC-2017-00311)
    corecore