6,260 research outputs found

    Entangled-state cycles from conditional quantum evolution

    Get PDF
    A system of cascaded qubits interacting via the oneway exchange of photons is studied. While for general operating conditions the system evolves to a superposition of Bell states (a dark state) in the long-time limit, under a particular resonance condition no steady state is reached within a finite time. We analyze the conditional quantum evolution (quantum trajectories) to characterize the asymptotic behavior under this resonance condition. A distinct bimodality is observed: for perfect qubit coupling, the system either evolves to a maximally entangled Bell state without emitting photons (the dark state), or executes a sustained entangled-state cycle - random switching between a pair of Bell states while emitting a continuous photon stream; for imperfect coupling, two entangled-state cycles coexist, between which a random selection is made from one quantum trajectory to another.Comment: 12 pages, 10 figure

    Quantum Teleportation of Light

    Full text link
    Requirements for the successful teleportation of a beam of light, including its temporal correlations, are discussed. Explicit expressions for the degrees of first- and second-order optical coherence are derived. Teleportation of an antibunched photon stream illustrates our results.Comment: 4 pages, 5 figure

    Atom detection in a two-mode optical cavity with intermediate coupling: Autocorrelation studies

    Full text link
    We use an optical cavity in the regime of intermediate coupling between atom and cavity mode to detect single moving atoms. Degenerate polarization modes allow excitation of the atoms in one mode and collection of spontaneous emission in the other, while keeping separate the two sources of light; we obtain a higher confidence and efficiency of detection by adding cavity-enhanced Faraday rotation. Both methods greatly benefit from coincidence detection of photons, attaining fidelities in excess of 99% in less than 1 microsecond. Detailed studies of the second-order intensity autocorrelation function of light from the signal mode reveal evidence of antibunched photon emissions and the dynamics of single-atom transits.Comment: 10 pages, 10 figures, to be published in Phys. Rev.

    From quantum feedback to probabilistic error correction: Manipulation of quantum beats in cavity QED

    Full text link
    It is shown how to implement quantum feedback and probabilistic error correction in an open quantum system consisting of a single atom, with ground- and excited-state Zeeman structure, in a driven two-mode optical cavity. The ground state superposition is manipulated and controlled through conditional measurements and external fields, which shield the coherence and correct quantum errors. Modeling of an experimentally realistic situation demonstrates the robustness of the proposal for realization in the laboratory

    Entangled and disentangled evolution for a single atom in a driven cavity

    Full text link
    For an atom in an externally driven cavity, we show that special initial states lead to near-disentangled atom-field evolution, and superpositions of these can lead to near maximally-entangled states. Somewhat counterintutively, we find that (moderate) spontaneous emission in this system actually leads to a transient increase in entanglement beyond the steady-state value. We also show that a particular field correlation function could be used, in an experimental setting, to track the time evolution of this entanglement

    Single photon absorption by a single quantum emitter

    Full text link
    We show that a three-level lambda quantum emitter with equal spontaneous emission rates on both optically active transitions can absorb an incident light field with a probability approaching unity, provided that the focused light profile matches that of the emitter dipole emission pattern. Even with realistic focusing geometries, our results could find applications in long-distance entanglement of spin qubits.Comment: 4 pages, 4 figure

    High-fidelity atomic-state teleportation protocol with non-maximally-entangled states

    Full text link
    We propose a protocol of the long-distance atomic state teleportation via cavity decay, which allows for high-fidelity teleportation even with currently available optical cavities. The protocol is based on the scheme proposed by Bose \emph{et al.} [Phys. Rev. Lett. {\textbf{83}}, 5158 (1999)] but with one important modification: it employs non-maximally-entangled states instead of maximally entangled states.Comment: 8 pages, 6 figures, accepted for publication in Phys. Rev.

    Proposed realization of the Dicke-model quantum phase transition in an optical cavity QED system

    Get PDF
    The Dicke model describing an ensemble of two-state atoms interacting with a single quantized mode of the electromagnetic field (with omission of the Ă‚^2 term) exhibits a zero-temperature phase transition at a critical value of the dipole coupling strength. We propose a scheme based on multilevel atoms and cavity-mediated Raman transitions to realize an effective Dicke model operating in the phase transition regime. Optical light from the cavity carries signatures of the critical behavior, which is analyzed for the thermodynamic limit where the number of atoms is very large
    • …
    corecore