3 research outputs found

    Implication of Anopheles funestus in malaria transmission in the city of Yaoundé, Cameroon

    Get PDF
    The contribution of Anopheles funestus to malaria transmission in the urban environment is still not well documented. The present study assesses the implication of An. funestus in malaria transmission in two districts, Nsam and Mendong, in the city of Yaoundé. Adult mosquitoes were collected using Centers for Disease Control and Prevention miniature light traps (CDC-LT) and human landing catches from April 2017 to March 2018 and were identified morphologically to the species level. Those belonging to the Anopheles gambiae complex and to the Anopheles funestus group were further processed by PCR to identify members of each complex/group. Anopheline mosquitoes were analysed to determine their infection status using an enzyme-linked immunosorbent assay. Bioassays were conducted with 2–5-day-old female Anopheles funestus and An. gambiae s.l. to determine their susceptibility to permethrin, deltamethrin and dichlorodiphenyltrichloroethane (DDT). Six anopheline species were collected in the peri-urban district of Mendong: Anopheles gambiae, An. coluzzii, An. funestus, An. leesoni, An. ziemanni and An. marshallii; only four out of the six were recorded in Nsam. Of the two members of the Anopheles gambiae complex collected, An. coluzzii was the most prevalent. Anopheles coluzzii was the most abundant species in Nsam, while An. funestus was the most abundant in Mendong. Both Anopheles funestus and An. gambiae s.l. were found to be infected with human Plasmodium at both sites, and both were found to be resistant to DDT, permethrin, and deltamethrin. This study confirms the participation of An. funestus in malaria transmission in Yaoundé and highlights the need to also target this species for sustainable control of malaria transmission

    High malaria transmission sustained by Anopheles gambiae s.l. occurring both indoors and outdoors in the city of Yaoundé, Cameroon [version 1; referees: 2 approved]

    Get PDF
    Background: Malaria remains a major public health problem in Cameroon; however, despite reports on the adaptation of anopheline species to urban habitats, there is still not enough information on malaria transmission pattern in urban settings. In the frame of a larval control trial in the city of Yaoundé, we conducted baseline surveys to assess malaria transmission dynamics in this city. Methods: Adult mosquitoes were collected indoors and outdoors using CDC light traps and human landing catches from March 2017 to March 2018 in 30 districts of Yaoundé, Cameroon. Mosquitoes were sorted by genus and identified to the species level using PCR. The TaqMan method and ELISA were used to determine mosquito infection status to Plasmodium. Bioassays were conducted to assess female Anopheles gambiae susceptibility to insecticides. Results: A total of 218,991 mosquitoes were collected. The main malaria vectors were An. gambiae s.l. (n=6154) and An. funestus s.l. (n=229). Of the 1476 An. gambiae s.l. processed by PCR, 92.19% were An. coluzzii and 7.81% An. gambiae. An. funestus s.l. was composed of 93.01% (173/186) An. funestus and 4.84% (13/186) An. leesoni. The average biting rate of anopheline was significantly high outdoor than indoor (P=0.013). Seasonal variation in mosquito abundance and biting rate was recorded. The infection rate by Plasmodium falciparum was 2.13% (104/4893 mosquitoes processed). The annual entomological inoculation rate was found to vary from 0 to 92 infective bites/man/year (ib/m/y). Malaria transmission risk was high outdoor (66.65 ib/m/y) compared to indoor (31.14 ib/m/y). An. gambiae s.l. was found highly resistant to DDT, permethrin and deltamethrin. High prevalence of the West Africa kdr allele 1014F was recorded and this was not found to influence An. gambiae s.l. infection status.   Conclusion: The study suggests high malaria transmission occurring in the city of Yaoundé and call for immediate actions to improve control strategies

    Spatial distribution of Anopheles gambiae sensu lato larvae in the urban environment of Yaoundé, Cameroon.

    Get PDF
    BACKGROUND The rapid and unplanned urbanization of African cities is considered to increase the risk of urban malaria transmission. The present study objective was to assess factors influencing the spatio-temporal distribution of Anopheles gambiae s.l. larvae in the city of Yaoundé, Cameroon. METHODS All water bodies were checked once every 2 months for the presence of mosquito larvae from March 2017 to May 2018 in 32 districts of Yaoundé. Physico-chemical characteristics including the size, depth, turbidity, pH, temperature, conductivity, sulfates, organophosphates, hydrogen peroxide (HO), conductivity, iron and calcium were recorded and analyzed according to anopheline larvae presence or absence. High resolution satellite images from landsat sentinel Enhanced Thematic Mapper were used for spatial mapping of both field and environmental variables. Bivariate and multivariate logistic regression models were used to identify variables closely associated with anopheline larvae distribution. RESULTS A total of 18 696 aquatic habitats were checked and only 2942 sites (15.7%) contained anopheline larvae. A high number of sites with anopheline larvae (≥ 69%) presented late instar larvae (L3, L4 and pupae). Anopheline mosquito larvae were sampled from a variety of breeding sites including puddles (51.6%), tire prints (12.9%), wells (11.7%) and drains (11.3%). Bivariate logistic regression analyses associated anopheline larvae presence with the absence of predators, absence of algae, absence of vegetation and depth of less than 1 m. Conductivity, turbidity, organophosphates, HO and temperature were significantly high in breeding sites with anopheline larvae than in breeding sites without these larvae (P <  0.1). Anopheline species collected included An. coluzzii (91.1%) and An. gambiae s.s. (8.9%). GIS mapping indicated a heterogeneous distribution of anopheline breeding habitats in the city of Yaoundé. Land cover analysis indicated high variability of the city of Yaoundé's landscape. CONCLUSIONS The data confirms adaptation of An. gambiae s.l. to the urban domain in the city of Yaoundé and calls for urgent actions to improve malaria vector control
    corecore