12 research outputs found

    ASSESSMENT OF TOXICITY OF INDUSTRIAL WASTES USING CROP PLANT ASSAYS

    Get PDF
    Environmental pollution has a harmful action on bioresources, including agricultural crops. It is generated through many industrial activities such as mining, coal burning, chemical technology, cement production, pulp and paper industry, etc. The toxicity of different industrial wastes and heavy metals excess was evaluated using crop plant assays (germination and hydroponics seedlings growth tests). Experimental data regarding the germination process of wheat (from two cultivars) and rye seeds in the presence of industrial wastes (thermal power station ash, effluents from a pre-bleaching stage performed on a Kraft cellulose – chlorinated lignin products or chlorolignin), along with use of an excess of some heavy metals (Zn and Cu) are presented here. Relative seed germination, relative root elongation, and germination index (a factor of relative seed germination and relative root elongation) were determined. Relative root elongation and germination index were more sensitive indicators of toxicity than seed germination. The toxic effects were also evaluated in hydroponics experiments, the sensitivity of three crop plant species, namely Triticum aestivum L. (wheat), Secale cereale (rye), and Zea mays (corn) being compared. Physiological aspects, evidenced both by visual observation and biometric measurements (mean root, aerial part and plant length), as well as the cellulose and lignin content were examined

    PREPARATION AND CHARACTERIZATION OF COMPOSITES COMPRISING MODIFIED HARDWOOD AND WOOD POLYMERS/POLY(VINYL CHLORIDE)

    Get PDF
    Chemical modification of hardwood sawdust from ash-tree species was carried out with a solution of maleic anhydride in acetone. Wood polymers, lignin, and cellulose were isolated from the wood sawdust and modified by the same method. Samples were characterized by Fourier transform infrared spectroscopy (FTIR), providing evidence that maleic anhydride esterifies the free hydroxyl groups of the wood polymer components. Composites comprising chemically modified wood sawdust and wood polymers (cellulose, lignin)-as variable weight percentages-, and poly (vinyl chloride) were obtained and further characterized by using FTIR spectroscopy and scanning electron microscopy (SEM). The thermal behavior of composites was investigated by using the thermogravimetric analysis (TGA). In all cases, thermal properties were affected by fillers addition

    Crystalline Structure of Cellulose in Wood after Chemical Modification Using Cyclic Acid Anhydrides (Maleic and Succinic)

    Get PDF
    The chemical modification of wood can be directed to improve various properties, e.g., the dimensional stability, hardness properties, and/or durability properties, against weathering. In this study, a Romanian softwood species Abies alba L. was treated and chemically modified using two cyclic acid anhydrides, i.e., maleic and succinic, to improve its interfacial properties relative to unmodified wood. Structural changes, with focus on the evolution of crystalline part in wood after chemical modification, the water absorption, and the water repellent efficiency, were determined. Maleic anhydride exhibited a lower reactivity towards wood substrate than succinic anhydride, presumably because of their different chemical structure (maleic anhydride is very sensitive to the presence of water). It was found that the percentage of water absorption was diminished, primarily after the succinic anhydride treatment. The chemically modified wood was characterized via Fourier transform-infrared spectroscopy and wide-angle X-ray diffraction methods. The crystalline part from wood structure was evidenced in relation to the employed anhydride in chemical modification approach

    CHEMICAL MODIFICATION OF BEECH WOOD: EFFECT ON THERMAL STABILITY

    No full text
    Beech sawdust was reacted with phthalic (PA) and maleic (MA) anhydrides for chemical modification. The influence of reaction time and anhydride amount was investigated. IR spectra gave evidence of wood esterification. Thermogravimetric investigation of chemically modified wood indicated a better thermal stability (mainly for wood treated with phthalic anhydride) in comparison with the untreated wood

    Green Composites Comprising Thermoplastic Corn Starch and Various Cellulose-Based Fillers

    No full text
    Starch microparticles (SM) were prepared by delivering ethanol as the precipitant into a starch paste solution dropwise. Chemically modified starch microparticles (CSM) were fabricated by a reaction with malic acid using the dry-preparation technique. Composites were prepared using CSM and various cellulose materials as fillers within glycerol plasticized–corn starch matrix through the casting process. Microcrystalline cellulose (MC, as reference filler) and two cellulose-enriched materials, namely Asclepias syriaca L. seed hairs (ASSH) and Populus alba L. seed hairs (PSH), were compared in terms of morphology and performance when incorporated within the CSM/S thermoplastic matrix. The effects of cellulose fillers on the morphology, surface, water sorption, and mechanical properties were investigated. The surface water resistance of composite materials was slightly improved through addition of cellulose fillers. Samples containing cellulose fillers presented higher tensile strength but lower elongation values compared with those without fillers

    Bile Acid Sequestrants Based on Natural and Synthetic Gels

    No full text
    Bile acid sequestrants (BASs) are non-systemic therapeutic agents used for the management of hypercholesterolemia. They are generally safe and not associated with serious systemic adverse effects. Usually, BASs are cationic polymeric gels that have the ability to bind bile salts in the small intestine and eliminate them by excretion of the non-absorbable polymer–bile salt complex. This review gives a general presentation of bile acids and the characteristics and mechanisms of action of BASs. The chemical structures and methods of synthesis are shown for commercial BASs of first- (cholestyramine, colextran, and colestipol) and second-generation (colesevelam and colestilan) and potential BASs. The latter are based on either synthetic polymers such as poly((meth)acrylates/acrylamides), poly(alkylamines), poly(allylamines) and vinyl benzyl amino polymers or biopolymers, such as cellulose, dextran, pullulan, methylan, and poly(cyclodextrins). A separate section is dedicated to molecular imprinting polymers (MIPs) because of their great selectivity and affinity for the template molecules used in the imprinting technique. Focus is given to the understanding of the relationships between the chemical structure of these cross-linked polymers and their potential to bind bile salts. The synthetic pathways used in obtaining BASs and their in vitro and in vivo hypolipidemic activities are also introduced

    Geotextiles—A Versatile Tool for Environmental Sensitive Applications in Geotechnical Engineering

    No full text
    Geotextiles, a group of high-performance materials, have grown during the last decades into needful auxiliaries when it comes to infrastructure, soil, construction, agriculture and environmental applications. Although geotextiles made of synthetic fibers (geosynthetics) are considered a modern achievement, the basic concept dates back to ancient times when textiles consisting of locally available natural fibers were employed to increase the stability of roads and soils. In recent decades, considering the growing interest in environmental protection and sustainable development based on using renewable resources and the recovery and recycling of waste of various origins, the use of natural fibers-based geotextiles is a viable alternative, despite their limited-life service owing to their biodegradability. In addition to this feature, their low cost, good mechanical properties and large-scale accessibility recommend them for geo-engineering applications, environmental sensitive applications in geotechnical engineering, such as land improvements and soil erosion control. This paper focuses on geotextiles as a versatile tool in environmental applications given their high theoretic and practical relevance as substantiated by recent literature reports. Natural and synthetic geotextiles are presented herein, as well as their features that recommend them for geo-engineering. Insights on the main types of applications of geotextiles are also included, along with a wide variety of materials employed to perform specific functions

    The Re-/Up-Cycling of Wood Waste in Wood–Polymer Composites (WPCs) for Common Applications

    No full text
    Wood–polymer composites (WPCs) are a class of materials intensively studied and promoted in the context of sustainable development, mainly when aspects related to the increasing awareness of environmental issues and waste management are considered. Feasible opportunities for producing WPCs with value-added properties intended for common applications emerge when polymers, either synthetic or from renewable resources, raw or waste, are employed in re-/up-cycling approaches. In this context, some examples of easily achievable WPCs are presented herein, namely, formulations based on different wood waste and polymer matrices (synthetic: polypropylene and malleated polypropylene as a compatibilizer; natural: plasticized starch). Their level of performance was assessed through different characterization methods (FTIR, WAXD, TGA, DSC, mechanical test, etc.). The benefits and limitations of this approach are also discussed

    Geotextiles—A Versatile Tool for Environmental Sensitive Applications in Geotechnical Engineering

    No full text
    Geotextiles, a group of high-performance materials, have grown during the last decades into needful auxiliaries when it comes to infrastructure, soil, construction, agriculture and environmental applications. Although geotextiles made of synthetic fibers (geosynthetics) are considered a modern achievement, the basic concept dates back to ancient times when textiles consisting of locally available natural fibers were employed to increase the stability of roads and soils. In recent decades, considering the growing interest in environmental protection and sustainable development based on using renewable resources and the recovery and recycling of waste of various origins, the use of natural fibers-based geotextiles is a viable alternative, despite their limited-life service owing to their biodegradability. In addition to this feature, their low cost, good mechanical properties and large-scale accessibility recommend them for geo-engineering applications, environmental sensitive applications in geotechnical engineering, such as land improvements and soil erosion control. This paper focuses on geotextiles as a versatile tool in environmental applications given their high theoretic and practical relevance as substantiated by recent literature reports. Natural and synthetic geotextiles are presented herein, as well as their features that recommend them for geo-engineering. Insights on the main types of applications of geotextiles are also included, along with a wide variety of materials employed to perform specific functions

    Insights on Some Polysaccharide Gel Type Materials and Their Structural Peculiarities

    No full text
    Global resources have to be used in responsible ways to ensure the world’s future need for advanced materials. Ecologically friendly functional materials based on biopolymers can be successfully obtained from renewable resources, and the most prominent example is cellulose, the well-known most abundant polysaccharide which is usually isolated from highly available biomass (wood and wooden waste, annual plants, cotton, etc.). Many other polysaccharides originating from various natural resources (plants, insects, algae, bacteria) proved to be valuable and versatile starting biopolymers for a wide array of materials with tunable properties, able to respond to different societal demands. Polysaccharides properties vary depending on various factors (origin, harvesting, storage and transportation, strategy of further modification), but they can be processed into materials with high added value, as in the case of gels. Modern approaches have been employed to prepare (e.g., the use of ionic liquids as “green solvents”) and characterize (NMR and FTIR spectroscopy, X ray diffraction spectrometry, DSC, electronic and atomic force microscopy, optical rotation, circular dichroism, rheological investigations, computer modelling and optimization) polysaccharide gels. In the present paper, some of the most widely used polysaccharide gels will be briefly reviewed with emphasis on their structural peculiarities under various conditions
    corecore