52 research outputs found

    The effect of sinoaortic denervation on renal wrap hypertension

    Get PDF
    The purpose of this study was to determine whether sinoaortic deafferentation (SAD) alters the severity of hypertension or sympathoadrenal contribution to mean blood pressure (MAP) during renal wrap hypertension. Male Sprague-Dawley rats were implanted with radiotelemetry transmitters for 24-hour recording of MAP and heart rate. All rats underwent either SAD or sham SAD (Intact) surgery and were allowed to recover for 10 to 14 days. The rats were then assigned to a normotensive (Sham) group or a hypertensive (Wrap) group in which 1-kidney figure-8 renal wrap was performed. SAD increased the acute MAP response to renal wrap (Intact-Sham=5+/-1 mm Hg, Intact-Wrap=45+/-3 mm Hg, SAD-Sham=3+/-3 mm Hg, SAD-Wrap=58+/-4 mm Hg) and increased the lability of MAP (SD of MAP; Intact-Sham=3.8+/-0.2, Intact-Wrap=4.2+/-0.3, SAD-Sham=9. 6+/-1.4, SAD-Wrap=9.7+/-1.4). MAP was not different between SAD and Intact rats during 4 weeks after renal wrap or sham surgery; however, induction of hypertension produced additional MAP variability that was independent of SAD (Intact-Sham=4.6+/-0.4, Intact-Wrap=6.2+/-0.6, SAD-Sham=6.3+/-0.5, SAD-Wrap=10.8+/-1.5). In a separate group of rats, the sympathoadrenal contribution to MAP was assessed by the depressor response to ganglionic blockade and plasma norepinephrine at rest and after neuronal uptake inhibition with desipramine. The depressor response to ganglionic blockade was significantly increased by renal wrap and by SAD (Intact-Sham=-49+/-2 mm Hg, Intact-Wrap=-73+/-4 mm Hg, SAD-Sham=-77+/-5 mm Hg, SAD-Wrap=-96+/-6 mm Hg). In the 3 groups with enhanced ganglionic blockade responses, desipramine caused a significant increase in plasma norepinephrine. These results indicate that SAD does not alter the development of renal wrap hypertension but does increase the sympathoadrenal contribution to MAP in both normotensive and hypertensive animal

    Heart Rate Variability during Simulated Hemorrhage with Lower Body Negative Pressure in High and Low Tolerant Subjects

    Get PDF
    Heart rate variability (HRV) decreases during hemorrhage, and has been proposed as a new vital sign to assess cardiovascular stability in trauma patients. The purpose of this study was to determine if any of the HRV metrics could accurately distinguish between individuals with different tolerance to simulated hemorrhage. Specifically, we hypothesized that (1) HRV would be similar in low tolerant (LT) and high tolerant (HT) subjects at presyncope when both groups are on the verge of hemodynamic collapse; and (2) HRV could distinguish LT subjects at presyncope from hemodynamically stable HT subjects (i.e., at a submaximal level of hypovolemia). Lower body negative pressure (LBNP) was used as a model of hemorrhage in healthy human subjects, eliciting central hypovolemia to the point of presyncopal symptoms (onset of hemodynamic collapse). Subjects were classified as LT if presyncopal symptoms occurred during the −15 to −60 mmHg levels of LBNP, and HT if symptoms occurred after LBNP of −60 mmHg. A total of 20 HRV metrics were derived from R–R interval measurements at the time of presyncope, and at one level prior to presyncope (submax) in LT and HT groups. Only four HRV metrics (Long-range Detrended Fluctuation Analysis, Forbidden Words, Poincaré Plot Descriptor Ratio, and Fractal Dimensions by Curve Length) supported both hypotheses. These four HRV metrics were evaluated further for their ability to identify individual LT subjects at presyncope when compared to HT subjects at submax. Variability in individual LT and HT responses was so high that LT responses overlapped with HT responses by 85–97%. The sensitivity of these HRV metrics to distinguish between individual LT from HT subjects was 6–33%, and positive predictive values were 40–73%. These results indicate that while a small number of HRV metrics can accurately distinguish between LT and HT subjects using group mean data, individual HRV values are poor indicators of tolerance to hypovolemia

    Resting sympathetic baroreflex sensitivity in subjects with low and high tolerance to central hypovolemia induced by lower body negative pressure

    Get PDF
    Central hypovolemia elicited by orthostasis or hemorrhage triggers sympathetically-mediated baroreflex responses to maintain organ perfusion; these reflexes are less sensitive in patients with orthostatic intolerance, and during conditions of severe blood loss, may result in cardiovascular collapse (decompensatory or circulatory shock). The ability to tolerate central hypovolemia is variable and physiological factors contributing to tolerance are emerging. We tested the hypothesis that resting muscle sympathetic nerve activity (MSNA) and sympathetic baroreflex sensitivity (BRS) are attenuated in male and female subjects who have low tolerance (LT) to central hypovolemia induced by lower body negative pressure (LBNP). MSNA and diastolic arterial pressure (DAP) were recorded in 47 human subjects who subsequently underwent LBNP to tolerance (onset of presyncopal symptoms). LT subjects experienced presyncopal symptoms prior to completing LBNP of -60 mm Hg, and subjects with high tolerance (HT) experienced presyncopal symptoms after completing LBNP after -60 mmHg. Contrary to our hypothesis, resting MSNA burst incidence was not different between LT and HT subjects, and was not related to time to presyncope. BRS was assessed as the slope of the relationship between spontaneous fluctuations in DAP and MSNA during 5 min of supine rest. MSNA burst incidence/DAP correlations were greater than or equal to 0.5 in 37 subjects (LT: n= 9; HT: n=28), and BRS was not different between LT and HT (-1.8 ± 0.3 vs. -2.2 ± 0.2 bursts•(100 beats)-1•mmHg-1, p=0.29). We conclude that tolerance to central hypovolemia is not related to either resting MSNA or sympathetic BRS

    Sympathetic Responses to Central Hypovolemia: New Insights from Microneurographic Recordings

    Get PDF
    Hemorrhage remains a major cause of mortality following traumatic injury in both military and civilian settings. Lower body negative pressure (LBNP) has been used as an experimental model to study the compensatory phase of hemorrhage in conscious humans, as it elicits central hypovolemia like that induced by hemorrhage. One physiological compensatory mechanism that changes during the course of central hypovolemia induced by both LBNP and hemorrhage is a baroreflex-mediated increase in muscle sympathetic nerve activity (MSNA), as assessed with microneurography. The purpose of this review is to describe recent results obtained using microneurography in our laboratory as well as those of others that have revealed new insights into mechanisms underlying compensatory increases in MSNA during progressive reductions in central blood volume and how MSNA is altered at the point of hemodynamic decompensation. We will also review recent work that has compared direct MSNA recordings with non-invasive surrogates of MSNA to determine the appropriateness of using such surrogates in assessing the clinical status of hemorrhaging patients

    Autonomous Operation of a Reconfigurable Multi-Robot System for Planetary Space Missions

    Get PDF
    Reconfigurable robots can physically merge and form new types of composite systems. This ability leads to additional degrees of freedom for robot operations especially when dynamically composed robotic systems offer capabilities that none of the individual systems have. Research in the area of reconfigurable multi-robot systems has mainly been focused on swarm-based robots and thereby to systems with a high degree of modularity but a heavily restricted set of capabilities. In contrast, this thesis deals with heterogeneous robot teams comprising individually capable robots which are also modular and reconfigurable. In particular, the autonomous application of such reconfigurable multi-robot systems to enhance robotic space exploration missions is investigated. Exploiting the flexibility of a reconfigurable multi-robot system requires an appropriate system model and reasoner. Hence, this thesis introduces a special organisation model. This model accounts for the key characteristics of reconfigurable robots which are constrained by the availability and compatibility of hardware interfaces. A newly introduced mapping function between resource structures and functional properties permits to characterise dynamically created agent compositions. Since a combinatorial challenge lies in the identification of feasible and functionally suitable agents, this thesis further suggests bounding strategies to reason efficiently with composite robotic systems. This thesis proposes a mission planning algorithm which permits to exploit the flexibility of reconfigurable multi-robot systems. The implemented planner builds upon the developed organisation model so that multi-robot missions can be specified by high-level functionality constraints which are resolved to suitable combinations of robots. Furthermore, the planner synchronises robot activities over time and characterises plans according to three objectives: efficacy, efficiency and safety. The plannera s evaluation demonstrates an optimization of an exemplary space mission. This research is based on the parallel development of theoretical concepts and practical solutions while working with three reconfigurable multi-robot teams. The operation of a reconfigurable robotic team comes with practical constraints. Therefore, this thesis composes and evaluates an operational infrastructure which can serve as reference implementation. The identification and combination of applicable state-of-the-art technologies result in a distributed and dynamically extensible communication infrastructure which can maintain the properties of reconfigurable multi-robot systems. Field tests covering semi-autonomous and autonomous operation have been performed to characterise multi-robot missions and validate the autonomous control approach for reconfigurable multi-robot systems. The practical evaluation identified critical constraints and design elements for a successful application of reconfigurable multi-robot systems. Furthermore, the experiments point to improvements for the organisation model. This thesis is a wholistic approach to automate reconfigurable multi-robot systems. It identifies theoretical as well as practical challenges and it suggests effective solutions which permit an exploitation of an increased level of flexibility in future robotics missions

    State-of-the-art monitoring in treatment of dengue shock syndrome: a case series

    Get PDF
    BACKGROUND: Early recognition and treatment of circulatory volume loss is essential in the clinical management of dengue viral infection. We hypothesized that a novel computational algorithm, originally developed for noninvasive monitoring of blood loss in combat casualties, could: (1) indicate the central volume status of children with dengue during the early stages of shock ; and (2) track fluid resuscitation status. METHODS: Continuous noninvasive photoplethysmographic waveforms were collected over a 5-month period from three children of Thai ethnicity with clinical suspicion of dengue. Waveform data were processed by the algorithm to calculate each child\u27s Compensatory Reserve Index, where 1 represents supine normovolemia and 0 represents the circulatory volume at which hemodynamic decompensation occurs. Values between 1 and 0 indicate the proportion of reserve remaining before hemodynamic decompensation. RESULTS: This case report describes a 7-year-old Thai boy, another 7-year-old Thai boy, and a 9-year-old Thai boy who exhibited signs and symptoms of dengue shock syndrome; all the children had secondary dengue virus infections, documented by serology and reverse transcriptase polymerase chain reaction. The three boys experienced substantial plasma leakage demonstrated by pleural effusion index \u3e 25, ascites, and \u3e 20 % hemoconcentration. They received fluid administered intravenously; one received a blood transfusion. All three boys showed a significantly low initial Compensatory Reserve Index ( \u3e /=0.20), indicating a clinical diagnosis of near shock . Following 5 days with fluid resuscitation treatment, their Compensatory Reserve Index increased towards normovolemia (that is, Compensatory Reserve Index \u3e 0.75). CONCLUSIONS: The results from these cases demonstrate a new variation in the diagnostic capability to manage patients with dengue shock syndrome. The findings shed new light on a method that can avoid possible adverse effects of shock by noninvasive measurement of a patient\u27s compensatory reserve rather than standard vital signs or invasive diagnostic methods

    Aging Modifies the Cardiac Response to Estrogen

    No full text

    Heart rate variability in patients being treated for dengue viral infection: new insights from mathematical correction of heart rate

    No full text
    Introduction: Severe dengue hemorrhagic fever (DHF) is a viral infection that acts to increase permeability of capillaries, resulting in internal hemorrhage. Linear frequency domain Fourier spectral analysis represents the most published noninvasive tool for diagnosing and assessing health status via calculated heart rate variability (HRV). As such, HRV may be useful in assessing clinical status in DHF patients, but is prone to erroneous results and conclusions due to the influence of the average HR during the time period of HRV assessment (defined as the ’prevailing’ HR). We tested the hypothesis that alterations in HRV calculated with linear frequency analysis would be minimal when mathematically corrected for prevailing HR following dengue viral infection. Methods: Male (N=16) and female (N= 11) patients between the ages of 6 months and 15 years of age (10 ± 6 SD years) were tracked through the progression of the dengue viral infection with treatment following the abatement of a fever (defervescence). Electrocardiographic recordings were collected and analyzed for HRV. Results: High frequency (HF), low frequency (LF), and LF/HF ratio were unaffected by correction for prevailing HR. Conclusion: HRV corrected for changes in HR did not alter the interpretations of our data. Therefore, we conclude that cardiac parasympathetic activity (HF frequency) is responsible for the majority of the HR reduction following defervescence in patients with dengue viral infection
    corecore