4 research outputs found

    Co-Microencapsulated Black Rice Anthocyanins and Lactic Acid Bacteria: Evidence on Powders Profile and In Vitro Digestion

    No full text
    Two multi-functional powders, in terms of anthocyanins from black rice (Oryza sativa L.) and lactic acid bacteria (Lactobacillus paracasei, L. casei 431®) were obtained through co-microencapsulation into a biopolymer matrix composed of milk proteins and inulin. Two extracts were obtained using black rice flour as a raw material and hot water and ethanol as solvents. Both powders (called P1 for aqueous extract and P2 for ethanolic extract) proved to be rich sources of valuable bioactives, with microencapsulation efficiency up to 80%, both for anthocyanins and lactic acid bacteria. A higher content of anthocyanins was found in P1, of 102.91 ± 1.83 mg cyanindin-3-O-glucoside (C3G)/g dry weight (DW) when compared with only 27.60 ± 17.36 mg C3G/g DW in P2. The morphological analysis revealed the presence of large, thin, and fragile structures, with different sizes. A different pattern of gastric digestion was observed, with a highly protective effect of the matrix in P1 and a maximum decrease in anthocyanins of approximatively 44% in P2. In intestinal juice, the anthocyanins decreased significantly in P2, reaching a maximum of 97% at the end of digestion; whereas in P1, more than 45% from the initial anthocyanins content remained in the microparticles. Overall, the short-term storage stability test revealed a release of bioactive from P2 and a decrease in P1. The viable cells of lactic acid bacteria after 21 days of storage reached 7 log colony forming units (CFU)/g DW

    Process-Structure-Function in Association with the Main Bioactive of Black Rice Flour Sieving Fractions

    No full text
    The aim of this work was to advance knowledge on the potential use of black rice different sieving fractions for various functional applications, through proximate analysis, thermal degradation kinetics of phytochemical and characterization of the thermal behavior of the main proteins, from the perspectives of their use as a food ingredient. The results indicated that the thermal degradation of phytochemicals followed a first-order reaction kinetics for all the tested fractions. The temperature-dependent degradation was adequately modeled according to the Arrhenius equation. The calculated activation energies (Ea) and k values were different among the four studied parameters. The kinetic parameters depended on the grinding and sieving degree, the anthocyanins being the most thermolabile compounds, thus affecting the antioxidant activity. Three protein fractions were identified by electrophoresis with different molecular weight, such as albumin, globulin, and glutelin. The fluorescence spectroscopy experiments revealed the sequential character of the heat-induced conformational changes, different molecular events being suggested, such as folding in the lower temperature range and unfolding at higher temperature. The significance of the study is evidenced by the need to identify and advance the process-structure-function relationships for various biologically active compounds from the perspective of obtaining food or ingredients nutritionally optimized

    Three Types of Beetroot Products Enriched with Lactic Acid Bacteria

    No full text
    Beetroot (Beta vulgaris L.) represents a very rich source of bioactive compounds such as phenolic compounds and carotenoids, among which the most important being betalains, mainly betacyanins and betaxanthins. The beetroot matrix was used in a fresh or dried form or as lyophilized powder. A 1012 CFU/g inoculum of Lactobacillus plantarum MIUG BL3 culture was sprayed on the vegetal tissue. The lactic acid bacteria (LAB) viability for all the products was evaluated over 21 days, by microbiological culture methods. The antioxidant activity of the obtained food products was correlated to the betalains content and the viability of LAB. The content of polyphenolic compounds varied between 225.7 and 1314.7 mg L−1, hence revealing a high content of bioactive compounds. Through the confocal laser scanning microscopy analysis, a large number of viable probiotic cells were observed in all the variants but especially in the fresh red beet cubes. After 21 days of refrigeration, the high content of Lb. plantarum (CFU per gram) of the food products was attributed to the biocompounds and the nutrients of the vegetal matrix that somehow protected the bacterial cells, and thus maintained their viability. The obtained food products enriched with probiotic LAB can be regarded as new functional food products due to the beneficial properties they possessed throughout the undertaken experiments

    Tailoring the Health-Promoting Potential of Protein Hydrolysate Derived from Fish Wastes and Flavonoids from Yellow Onion Skins: From Binding Mechanisms to Microencapsulated Functional Ingredients

    No full text
    This study focuses on combining different bioprocessing tools in order to develop an in-depth engineering approach for enhancing the biological properties of two valuable food by-products, namely fish waste and yellow onion skins, in a single new bioactive formulation. Bone tissue from phytophagous carp (Hypophthalmichthys molitrix) was used to obtain bioactive peptides through papain-assisted hydrolysis. The peptides with molecular weight lower than 3 kDa were characterized through MALDI-ToF/ToF mass spectrometry and bioinformatics tools. As a prerequisite for microencapsulation, the ability of these peptides to bind the flavonoids extracted from yellow onion skins was further tested through fluorescence quenching measurements. The results obtained demonstrate a considerable binding potency with a binding value of 106 and also the presence of one single or one class of binding site during the interaction process of flavonoids with peptides, in which the main forces involved are hydrogen bonds and van der Waals interactions. In the freeze-drying microencapsulation process, an efficiency for total flavonoids of 88.68 ± 2.37% was obtained, considering the total flavonoids and total polyphenols from the powder of 75.72 ± 2.58 quercetin equivalents/g dry weight (DW) and 97.32 ± 2.80 gallic acid equivalents/g DW, respectively. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test on the L929 cell line cultivated in the presence of different concentrations of microencapsulated samples (0.05–1.5 mg/mL) proved no sign of cytotoxicity, the cell viability being over 80% for all the samples
    corecore