117 research outputs found
Is Geo-Indistinguishability What You Are Looking for?
Since its proposal in 2013, geo-indistinguishability has been consolidated as
a formal notion of location privacy, generating a rich body of literature
building on this idea. A problem with most of these follow-up works is that
they blindly rely on geo-indistinguishability to provide location privacy,
ignoring the numerical interpretation of this privacy guarantee. In this paper,
we provide an alternative formulation of geo-indistinguishability as an
adversary error, and use it to show that the privacy vs.~utility trade-off that
can be obtained is not as appealing as implied by the literature. We also show
that although geo-indistinguishability guarantees a lower bound on the
adversary's error, this comes at the cost of achieving poorer performance than
other noise generation mechanisms in terms of average error, and enabling the
possibility of exposing obfuscated locations that are useless from the quality
of service point of view
Rethinking Location Privacy for Unknown Mobility Behaviors
Location Privacy-Preserving Mechanisms (LPPMs) in the literature largely
consider that users' data available for training wholly characterizes their
mobility patterns. Thus, they hardwire this information in their designs and
evaluate their privacy properties with these same data. In this paper, we aim
to understand the impact of this decision on the level of privacy these LPPMs
may offer in real life when the users' mobility data may be different from the
data used in the design phase. Our results show that, in many cases, training
data does not capture users' behavior accurately and, thus, the level of
privacy provided by the LPPM is often overestimated. To address this gap
between theory and practice, we propose to use blank-slate models for LPPM
design. Contrary to the hardwired approach, that assumes known users' behavior,
blank-slate models learn the users' behavior from the queries to the service
provider. We leverage this blank-slate approach to develop a new family of
LPPMs, that we call Profile Estimation-Based LPPMs. Using real data, we
empirically show that our proposal outperforms optimal state-of-the-art
mechanisms designed on sporadic hardwired models. On non-sporadic location
privacy scenarios, our method is only better if the usage of the location
privacy service is not continuous. It is our hope that eliminating the need to
bootstrap the mechanisms with training data and ensuring that the mechanisms
are lightweight and easy to compute help fostering the integration of location
privacy protections in deployed systems
Measuring Membership Privacy on Aggregate Location Time-Series
While location data is extremely valuable for various applications,
disclosing it prompts serious threats to individuals' privacy. To limit such
concerns, organizations often provide analysts with aggregate time-series that
indicate, e.g., how many people are in a location at a time interval, rather
than raw individual traces. In this paper, we perform a measurement study to
understand Membership Inference Attacks (MIAs) on aggregate location
time-series, where an adversary tries to infer whether a specific user
contributed to the aggregates.
We find that the volume of contributed data, as well as the regularity and
particularity of users' mobility patterns, play a crucial role in the attack's
success. We experiment with a wide range of defenses based on generalization,
hiding, and perturbation, and evaluate their ability to thwart the attack
vis-a-vis the utility loss they introduce for various mobility analytics tasks.
Our results show that some defenses fail across the board, while others work
for specific tasks on aggregate location time-series. For instance, suppressing
small counts can be used for ranking hotspots, data generalization for
forecasting traffic, hotspot discovery, and map inference, while sampling is
effective for location labeling and anomaly detection when the dataset is
sparse. Differentially private techniques provide reasonable accuracy only in
very specific settings, e.g., discovering hotspots and forecasting their
traffic, and more so when using weaker privacy notions like crowd-blending
privacy. Overall, our measurements show that there does not exist a unique
generic defense that can preserve the utility of the analytics for arbitrary
applications, and provide useful insights regarding the disclosure of sanitized
aggregate location time-series
Systematizing Decentralization and Privacy: Lessons from 15 Years of Research and Deployments
Decentralized systems are a subset of distributed systems where multiple
authorities control different components and no authority is fully trusted by
all. This implies that any component in a decentralized system is potentially
adversarial. We revise fifteen years of research on decentralization and
privacy, and provide an overview of key systems, as well as key insights for
designers of future systems. We show that decentralized designs can enhance
privacy, integrity, and availability but also require careful trade-offs in
terms of system complexity, properties provided, and degree of
decentralization. These trade-offs need to be understood and navigated by
designers. We argue that a combination of insights from cryptography,
distributed systems, and mechanism design, aligned with the development of
adequate incentives, are necessary to build scalable and successful
privacy-preserving decentralized systems
Universal Neural-Cracking-Machines: Self-Configurable Password Models from Auxiliary Data
We develop the first universal password model -- a password model that, once
pre-trained, can automatically adapt to any password distribution. To achieve
this result, the model does not need to access any plaintext passwords from the
target set. Instead, it exploits users' auxiliary information, such as email
addresses, as a proxy signal to predict the underlying target password
distribution. The model uses deep learning to capture the correlation between
the auxiliary data of a group of users (e.g., users of a web application) and
their passwords. It then exploits those patterns to create a tailored password
model for the target community at inference time. No further training steps,
targeted data collection, or prior knowledge of the community's password
distribution is required. Besides defining a new state-of-the-art for password
strength estimation, our model enables any end-user (e.g., system
administrators) to autonomously generate tailored password models for their
systems without the often unworkable requirement of collecting suitable
training data and fitting the underlying password model. Ultimately, our
framework enables the democratization of well-calibrated password models to the
community, addressing a major challenge in the deployment of password security
solutions on a large scale.Comment: v0.0
- …