32 research outputs found
Electrogenic Na/HCO3 Cotransporter (NBCe1) Variants Expressed in Xenopus Oocytes: Functional Comparison and Roles of the Amino and Carboxy Termini
Using pH- and voltage-sensitive microelectrodes, as well as the two-electrode voltage-clamp and macropatch techniques, we compared the functional properties of the three NBCe1 variants (NBCe1-A, -B, and -C) with different amino and/or carboxy termini expressed in Xenopus laevis oocytes. Oocytes expressing rat brain NBCe1-B and exposed to a CO2/HCO3− solution displayed all the hallmarks of an electrogenic Na+/HCO3− cotransporter: (a) a DIDS-sensitive pHi recovery following the initial CO2-induced acidification, (b) an instantaneous hyperpolarization, and (c) an instantaneous Na+-dependent outward current under voltage-clamp conditions (−60 mV). All three variants had similar external HCO3− dependencies (apparent KM of 4–6 mM) and external Na+ dependencies (apparent KM of 21–36 mM), as well as similar voltage dependencies. However, voltage-clamped oocytes (−60 mV) expressing NBCe1-A exhibited peak HCO3−-stimulated NBC currents that were 4.3-fold larger than the currents seen in oocytes expressing the most dissimilar C variant. Larger NBCe1-A currents were also observed in current–voltage relationships. Plasma membrane expression levels as assessed by single oocyte chemiluminescence with hemagglutinin-tagged NBCs were similar for the three variants. In whole-cell experiments (Vm = −60 mV), removing the unique amino terminus of NBCe1-A reduced the mean HCO3−-induced NBC current 55%, whereas removing the different amino terminus of NBCe1-C increased the mean NBC current 2.7-fold. A similar pattern was observed in macropatch experiments. Thus, the unique amino terminus of NBCe1-A stimulates transporter activity, whereas the different amino terminus of the B and C variants inhibits activity. One or more cytosolic factors may also contribute to NBCe1 activity based on discrepancies between macropatch and whole-cell currents. While the amino termini influence transporter function, the carboxy termini influence plasma membrane expression. Removing the entire cytosolic carboxy terminus of NBCe1-C, or the different carboxy terminus of the A/B variants, causes a loss of NBC activity due to low expression at the plasma membrane
Reactive Species Mediate Inhibition of Alveolar Type II Sodium Transport during Mycoplasma Infection
Rationale: Mycoplasma pneumoniae is a significant cause of pneumonia in humans
Sinupret activates CFTR and TMEM16A-dependent transepithelial chloride transport and improves indicators of mucociliary clearance.
We have previously demonstrated that Sinupret, an established treatment prescribed widely in Europe for respiratory ailments including rhinosinusitis, promotes transepithelial chloride (Cl-) secretion in vitro and in vivo. The present study was designed to evaluate other indicators of mucociliary clearance (MCC) including ciliary beat frequency (CBF) and airway surface liquid (ASL) depth, but also investigate the mechanisms that underlie activity of this bioflavonoid.Primary murine nasal septal epithelial (MNSE) [wild type (WT) and transgenic CFTR(-/-)], human sinonasal epithelial (HSNE), WT CFTR-expressing CFBE and TMEM16A-expressing HEK cultures were utilized for the present experiments. CBF and ASL depth measurements were performed. Mechanisms underlying transepithelial Cl- transport were determined using pharmacologic manipulation in Ussing chambers, Fura-2 intracellular calcium [Ca(2+)]i imaging, cAMP signaling, regulatory domain (R-D) phosphorylation of CFTR, and excised inside out and whole cell patch clamp analysis.Sinupret-mediated Cl- secretion [ΔISC(µA/cm(2))] was pronounced in WT MNSE (20.7+/-0.9 vs. 5.6+/-0.9(control), p<0.05), CFTR(-/-) MNSE (10.1+/-1.0 vs. 0.9+/-0.3(control), p<0.05) and HSNE (20.7+/-0.3 vs. 6.4+/-0.9(control), p<0.05). The formulation activated Ca(2+) signaling and TMEM16A channels, but also increased CFTR channel open probability (Po) without stimulating PKA-dependent pathways responsible for phosphorylation of the CFTR R-domain and resultant Cl- secretion. Sinupret also enhanced CBF and ASL depth.Sinupret stimulates CBF, promotes transepithelial Cl- secretion, and increases ASL depth in a manner likely to enhance MCC. Our findings suggest that direct stimulation of CFTR, together with activation of Ca(2+)-dependent TMEM16A secretion account for the majority of anion transport attributable to Sinupret. These studies provide further rationale for using robust Cl- secretagogue based therapies as an emerging treatment modality for common respiratory diseases of MCC including acute and chronic bronchitis and CRS