12 research outputs found

    Norton Equivalent Circuit for Pulsed Photoconductive Antennas-Part I: Theoretical Model

    No full text
    A novel equivalent circuit for pulsed photoconductive sources is introduced for describing the coupling between the photoconductive gap and the antenna. The proposed circuit effectively describes the mechanism of feeding the antenna by the semiconductor when this latter is illuminated by a laser operating in a pulsed mode. Starting from the classical continuity equation, which models the free carriers' density with respect to the laser power pump and the semiconductor features, a Norton equivalent circuit in the frequency domain is derived. According to the Norton theorem, the equivalent source representation is decoupled from the antenna. In particular, for photoconductive antennas (PCAs), the Norton circuit takes into account of the electrical and optical properties of the semiconductor material, the features of the laser excitation, as well as the geometrical dimensions of the gap. The presence of the electrodes around the gap is part of the antenna and, therefore, it is taken into account in the antenna impedance. The proposed circuit allows the analysis of the coupling between the photoconductive source and the antenna, providing a tool to analyze and design PCAs.Tera-Hertz Sensin

    Dielectric Gratings Enhancing the Field of View in Low Dielectric Permittivity Elliptical Lenses

    No full text
    Low relative permittivity plastic elliptical lenses in combination with integrated focal plane arrays are a promising solution to be used in the future mm- and sub-mm-wave systems. Their appeal lies in the availability of materials with moderate loss and lightweight, and the possibility to use cost-effective manufacturing techniques. However, the achievable scanning angular range is relatively small with low permittivity lenses. In this article, we explore the use of dielectric gratings with modulated height integrated in the lens material, with the aim of enlarging the steering angle. The dielectric gratings synthesize a tilted feed pattern, reducing the reflection loss and spillover when illuminating the lens off-focus. A quasi-analytic approach based on the Floquet mode analysis of the gratings is used to synthesize the grating profile. This method is combined with an analysis in reception of the lens antenna. A wideband prototype in GG -band (140-220 GHz) has been fabricated, achieving a field of view of ±25° with gain >30 dBi.Tera-Hertz Sensin

    Coherent Fourier Optics Model for the Synthesis of Large Format Lens Based Focal Plane Arrays

    No full text
    Future sub millimeter imagers are being developed with large focal plane arrays (FPAs) of lenses to increase the field of view (FoV) and the imaging speed. A full-wave electromagnetic analysis of such arrays is numerically cumbersome and time-consuming. This article presents a spectral technique based on Fourier optics combined with geometrical optics for analyzing, in reception, lens-based FPAs with wide FoVs. The technique provides a numerically efficient methodology to derive the plane wave spectrum (PWS) of a secondary quasi-optical component. This PWS is used to calculate the power received by an antenna or absorber placed at the focal region of a lens. The method is applied to maximize the scanning performance of imagers with monolithically integrated lens feeds without employing an optimization algorithm. The derived PWS can be directly used to define the lens and feed properties. The synthesized FPA achieved scan losses much lower than the ones predicted by standard formulas for horn-based FPAs. In particular, an FPA with scan loss below 1 dB while scanning up to ±17.5° (±44 beam-widths) is presented with directivity of 52 dBi complying with the needs for future sub millimeter imagers. The technique is validated via a physical optics code with excellent agreement.Accepted Author ManuscriptTera-Hertz Sensin

    A Fourier Optics Tool to Derive the Plane Wave Spectrum of Quasi-Optical Systems [EM Programmer's Notebook]

    No full text
    We present a freely accessible graphical user interface (GUI) for analyzing antenna-fed quasi-optical (QO) systems in reception (Rx). This analysis is presented here for four widely used canonical QO components: parabolic reflectors and elliptical, extended hemispherical, and hyperbolic lenses. The employed methods are geometrical optics (GO) and Fourier optics (FO). Specifically, QO components are illuminated by incident plane waves. By using a GO-based propagation code, the scattered fields are evaluated at an equivalent sphere centered on the primary focus of the component. The FO methodology is then used to represent the scattered fields over the focal plane as plane wave spectrum. A field correlation between this spectrum and the antenna feed radiating without the QO component is implemented to evaluate the induced open-circuit voltage on the feed in Rx. By performing a field matching between these two spectral fields, feed designers can optimize the broadside and/or steering aperture efficiencies of QO systems in a fast manner. The tool is packaged into a MATLAB GUI, which reports the efficiency terms, directivity, and gain patterns of antenna-coupled QO systems. The described tool is validated via full-wave simulations with excellent agreement.Tera-Hertz Sensin

    Reception Power Pattern of Distributed Absorbers in Focal Plane Arrays: A Fourier Optics Analysis

    No full text
    Passive imaging cameras at millimeter and submillimeter wavelengths are currently entering a new era with the development of large format arrays of direct detectors. Several of these arrays are being developed with bare absorbing meshes without any antenna coupling (lens or horn) structures. The design of such arrays is typically done resorting to geometrical considerations or basic broadside plane wave incidence analysis. This paper presents a spectral technique for the analysis of such focal plane arrays in reception using Fourier Optics, which is valid also for moderately skewed incident angles. The analysis constitutes a step improvement with respect to previously used methods by providing an accurate and efficient way to estimate the point-source angular response and the throughput from a distributed incoherent source of an absorbing mesh in the focal plane of a quasi-optical component (e.g. a parabolic reflector or lens). The proposed technique is validated with full-wave simulations. After presenting the analysis, the paper compares the performance of arrays of bare absorber in the focal plane of a quasi-optical component to those of corresponding antenna based arrays. It is found that absorbers lead to a comparable trade-off, in terms of spill-over and focusing efficiency, only for very tight samplings. For larger samplings, the focusing efficiency of absorbers is significantly lower than the one for antennas.Accepted Author ManuscriptTera-Hertz Sensin

    A GO/FO Tool for Analyzing Quasi-Optical Systems in Reception

    No full text
    In this work, a free accessible MATLAB interface is presented to analyze antenna-coupled Quasi-Optical (QO) systems in reception. This goal is achieved by using Fourier Optics (FO) and Geometrical Optics (GO) based methods. Specifically, the FO method represents the field focalized by a QO component on its focal plane as a plane wave spectrum when the component is illuminated by an incident field. This spectrum is related to the field scattered by the QO component which is calculated here using a GO method. By using this spectrum, the tool estimates the power received by an antenna placed at the focal plane of the QO component. Moreover, the performance in reception is evaluated.Tera-Hertz Sensin

    Wideband Circularly Polarized Antenna with In-Lens Polarizer for High-Speed Communications

    No full text
    In this contribution, a broadband G-band leaky-wave (LW) fed lens antenna with an integrated dielectric grid polarizer is presented. The proposed wideband polarizer unit cell geometry enables its fabrication at frequencies higher than 100 GHz, presenting high transmission properties and low axial ratio (AR). A quasi-Analytic technique based on multilayer spectral Green's function combined with a numerical Floquet modes' solver is used to optimize the lens aperture efficiency and AR. The proposed technique is validated via full-wave (FW) simulations. A design is proposed in low dielectric permittivity material, achieving FW simulated aperture efficiency higher than 75% over 44% relative bandwidth, and an AR lower than 3 dB over 35% relative bandwidth. The antenna is able to achieve multiple directive circularly polarized (CP) beams when fed by a focal plane array, preserving the AR bandwidth. A prototype has been fabricated and measured, exhibiting an excellent agreement with quasi-Analytic and FW simulations. Tera-Hertz Sensin

    Dielectric-Grating In-Lens Polarizer for beyond 5G Communications

    No full text
    A high-gain broadband leaky-wave fed lens antenna with an integrated dielectric gratings polarizer covering the whole G-band (140-220GHz) is presented. This work focuses on the polarizer gratings manufacturing and in particular on the selection of plastic materials and the fabrication process refinement. The polarizer geometry has been designed and optimized to be compatible with standard milling techniques. A quasi-analytical method based on an analysis of the lens antenna in reception is used to validate the in-lens polarizer performance. Several prototypes have been fabricated, finally obtaining an excellent match between measurements and quasi-analytical results.Tera-Hertz Sensin

    Quasi-Optical System for the ASTE Telescope with 1:3 Bandwidth at Sub-mm Wave

    No full text
    DESHIMA is a spectrometer for astronomical applications targeting sources at sub-mm wavelengths from 240GHz to 720GHz that will operate in the ASTE telescope in Atacama Desert, Chile. In this work, a quasi-optical system based on a hyper-hemispherical leaky lens antenna and a series of Dragonian reflectors is presented as the coupling chain for the EM radiation captured by the telescope into the detector. The design procedure is based on a field matching technique in reception. The achieved average illumination efficiency over the band is approximately 70%. The directivity patterns in the sky are also estimated. The side lobe, and cross-polarization levels, over the whole frequency band, are below-16dB, and-18dB, respectively. The measurement of the system is on-going, and will be presented at the conference.Tera-Hertz Sensin

    Circularly Polarized Lens Antenna for Tbps Wireless Communications

    No full text
    The exponentially increasing demand for highspeed wireless links can be only efficiently satisfied with the development of future XG wireless communication networks, based on higher carrier signal frequencies, starting from 100 GHz. In this contribution, a circularly polarized G-band leaky-wave fed lens antenna with an integrated dielectric grid polarizer is presented, which can fulfill the challenging requirements for these future XG networks. A design is proposed in low dielectric permittivity material with a feed matching better than -10dB over a 44 % of relative bandwidth. The circularly polarized lens aperture efficiency is higher than 75% over a 35 % relative bandwidth, with an axial ratio lower than 3dB. Analytical tools have been applied to optimize the lens aperture efficiency, validating the results via full wave simulations. A lens prototype has been now fabricated and is currently being measured.Accepted author manuscriptTera-Hertz Sensin
    corecore