1,825 research outputs found
Classical phase-space descriptions of continuous-variable teleportation
The nonnegative Wigner function of all quantum states involved in
teleportation of Gaussian states using the standard continuous-variable
teleportation protocol means that there is a local realistic phase-space
description of the process. This includes the coherent states teleported up to
now in experiments. We extend the phase-space description to teleportation of
non-Gaussian states using the standard protocol and conclude that teleportation
of non-Gaussian states with fidelity of 2/3 is a "gold standard" for this kind
of teleportation.Comment: New version contains minor changes requested by journal referee
Coherent Quantum-Noise Cancellation for Optomechanical Sensors
Using a flowchart representation of quantum optomechanical dynamics, we
design coherent quantum-noise-cancellation schemes that can eliminate the
back-action noise induced by radiation pressure at all frequencies and thus
overcome the standard quantum limit of force sensing. The proposed schemes can
be regarded as novel examples of coherent feedforward quantum control.Comment: 4 pages, 5 figures, v2: accepted by Physical Review Letter
Abnormal Response of Tumor Vasculature to Vasoactive Drugs
The effects of the vasoconstrictor, phenylephrine, and the vasodilator, hydralazine, on blood flow to tumor were studied and compared to those on blood flow to normal tissues in vivo. Regional blood flow and cardiac output were measured with the use of radioactive microspheres in 150- to 250 g inbred Harlan F344 rats bearing subcutaneous nodules of two types of transplantable carcinoma ( hard and soft ) with microscopically different vascular patterns. Three groups of rats were treated with hydralazine, saline, or phenylephrine, and regional blood flow was determined at the time of maximum blood pressure response. Results were correlated with quantitative morphometric analysis of arteriolar and capillary wall thickness in tumor and normal tissue. Phenylephrine decreased, and hydralazine increased, normal tissue perfusion as indicated by cardiac output. Tumor blood flow remained low and was not significantly influenced by drug treatment, except for the phenylephrine effect on hard tumors. Histological study of tumor vessel walls revealed· an absence of smooth muscle capable of responding to the vasoactive drugs by constriction or dilation. Evidently, by their selective action on normal vessels, vasoactive drugs can change the ratio of tumor to normal tissue perfusion. In particular, the increase of normal tissue vs. tumor blood flow by vasodilator drugs may enhance the selectivity of local heat therapy
A double-label study of efferent projections from the Edinger-Westphal nucleus in goldfish and kelp bass
The Edinger-Westphal nucleus in goldfish was identified by retrograde labeling from the ciliary ganglion. In the same animals a few neurons near this nucleus (perinuclear Edinger-Westphal neurons) were labeled by a different retrograde tracer injected into the cerebellum. No double-labeled cells were found. Similar results were obtained in kelp bass, except that in this species no cerebellar-projecting perinuclear neurons were observed. Cerebellar-projecting Edinger-Westphal neurons have previously been described in some mammals, but not in other vertebrates. Therefore the homology of cerebellar-projecting cells of the Edinger-Westphal region in mammals and teleost fishes is doubtful
Relapses of Plasmodium vivax infection usually result from activation of heterologous hypnozoites.
BACKGROUND: Relapses originating from hypnozoites are characteristic of Plasmodium vivax infections. Thus, reappearance of parasitemia after treatment can result from relapse, recrudescence, or reinfection. It has been assumed that parasites causing relapse would be a subset of the parasites that caused the primary infection. METHODS: Paired samples were collected before initiation of antimalarial treatment and at recurrence of parasitemia from 149 patients with vivax malaria in Thailand (n=36), where reinfection could be excluded, and during field studies in Myanmar (n=75) and India (n=38). RESULTS: Combined genetic data from 2 genotyping approaches showed that novel P. vivax populations were present in the majority of patients with recurrent infection (107 [72%] of 149 patients overall [78% of patients in Thailand, 75% of patients in Myanmar {Burma}, and 63% of patients in India]). In 61% of the Thai and Burmese patients and in 55% of the Indian patients, the recurrent infections contained none of the parasite genotypes that caused the acute infection. CONCLUSIONS: The P. vivax populations emerging from hypnozoites commonly differ from the populations that caused the acute episode. Activation of heterologous hypnozoite populations is the most common cause of first relapse in patients with vivax malaria
Direct Neutron Capture for Magic-Shell Nuclei
In neutron capture for magic--shell nuclei the direct reaction mechanism can
be important and may even dominate. As an example we investigated the reaction
Ca(n,Ca for projectile energies below 250\,keV in a direct
capture model using the folding procedure for optical and bound state
potentials. The obtained theoretical cross sections are in agreement with the
experimental data showing the dominance of the direct reaction mechanism in
this case. The above method was also used to calculate the cross section for
Ca(n,Ca.Comment: REVTeX, 7 pages plus 3 uuencoded figures, the complete uuencoded
postscript file is available at ftp://is1.kph.tuwien.ac.at/pub/ohu/calcium.u
Measurement of neutron capture on Ca at thermal and thermonuclear energies
At the Karlsruhe pulsed 3.75\,MV Van de Graaff accelerator the thermonuclear
Ca(n,)Ca(8.72\,min) cross section was measured by the
fast cyclic activation technique via the 3084.5\,keV -ray line of the
Ca-decay. Samples of CaCO enriched in Ca by 77.87\,\% were
irradiated between two gold foils which served as capture standards. The
capture cross-section was measured at the neutron energies 25, 151, 176, and
218\,keV, respectively. Additionally, the thermal capture cross-section was
measured at the reactor BR1 in Mol, Belgium, via the prompt and decay
-ray lines using the same target material. The
Ca(n,)Ca cross-section in the thermonuclear and thermal
energy range has been calculated using the direct-capture model combined with
folding potentials. The potential strengths are adjusted to the scattering
length and the binding energies of the final states in Ca. The small
coherent elastic cross section of Ca+n is explained through the nuclear
Ramsauer effect. Spectroscopic factors of Ca have been extracted from
the thermal capture cross-section with better accuracy than from a recent (d,p)
experiment. Within the uncertainties both results are in agreement. The
non-resonant thermal and thermonuclear experimental data for this reaction can
be reproduced using the direct-capture model. A possible interference with a
resonant contribution is discussed. The neutron spectroscopic factors of
Ca determined from shell-model calculations are compared with the values
extracted from the experimental cross sections for Ca(d,p)Ca and
Ca(n,)Ca.Comment: 15 pages (uses Revtex), 7 postscript figures (uses psfig), accepted
for publication in PRC, uuencoded tex-files and postscript-files also
available at ftp://is1.kph.tuwien.ac.at/pub/ohu/Ca.u
Joint M3 and Diviner Analysis of the Mineralogy, Glass Composition, and Country Rock Content of Pyroclastic Deposits in Oppenheimer Crater
Here we present our analysis of the near- and mid-infrared spectral properties of pyroclastic deposits within the floor fractured Oppenheimer Crater that are hypothesized to be Vulcanian in origin. These are the first results of our global study of lunar pyroclastic deposits aimed at constraining the range of eruption processes on the Moon. In the near-infrared, we have employed a new method of spectral analysis developed in Horgan et al. (2013) of the 1 m iron absorption band in Chandrayaan-1 Moon Mineralogy Mapper (M3) spectra. By analyzing both the position and shape of the 1 m band we can detect and map the distribution of minerals, glasses, and mixtures of these phases in pyroclastic deposits. We are also using mid-infrared spectra from the Lunar Reconnaissance Orbiter Diviner Lunar Radiometer Experiment to develop ~200 m/pixel Christiansen Feature (CF) maps, which correlate with silica abundance. One of the benefits of using CF maps for analysis of pyroclastic deposits is that they can be used to detect silicic country rock that may have been emplaced by Vulcanian-style eruptions, and are sensitive to iron abundance in glasses, neither of which is possible in the near-infrared. M3 analysis reveals that the primary spectral endmembers are low-calcium pyroxene and iron-bearing glass, with only minor high-calcium pyroxene, and no detectable olivine. The large deposit in the south shows higher and more extensive glass concentrations than the surrounding deposits. We interpret the M3 spectra of the pyroclastic deposits as indicating a mixture of low-calcium pyroxene country rock and juvenile glass, and no significant olivine. Analysis of Diviner CF maps of the Oppenheimer crater floor indicates an average CF value of 8.16, consistent with a mixture of primarily plagioclase and some pyroxene. The average CF values of the pyroclastic deposits range from 8.31 in the SW to 8.24 in the SE. Since CF values within the deposits are as high as 8.49, the lower average CF values of the deposits suggest that each deposit is a mixture of crater floor material and highly mafic juvenile material consistent with either olivine or Fe-bearing pyroclastic glass. Synthesizing our M3 and Diviner results indicates that the crater floor consists of plagioclase with some pyroxene, and the pyroclastic deposits are a mix of this substrate and a glass-rich juvenile material. While we cannot determine the iron content of the glass from M3 spectra alone, the high Diviner CF values suggest that the glass is relatively iron-rich. Indeed, FeO abundances inferred from CF values using the method of Allen et al. (2012) imply that the large southern deposit exhibits a significant enhancement in iron content. This supports our hypothesis that the glass in this deposit is relatively iron-rich
Hypersensitivity and chaos signatures in the quantum baker's maps
Classical chaotic systems are distinguished by their sensitive dependence on
initial conditions. The absence of this property in quantum systems has lead to
a number of proposals for perturbation-based characterizations of quantum
chaos, including linear growth of entropy, exponential decay of fidelity, and
hypersensitivity to perturbation. All of these accurately predict chaos in the
classical limit, but it is not clear that they behave the same far from the
classical realm. We investigate the dynamics of a family of quantizations of
the baker's map, which range from a highly entangling unitary transformation to
an essentially trivial shift map. Linear entropy growth and fidelity decay are
exhibited by this entire family of maps, but hypersensitivity distinguishes
between the simple dynamics of the trivial shift map and the more complicated
dynamics of the other quantizations. This conclusion is supported by an
analytical argument for short times and numerical evidence at later times.Comment: 32 pages, 6 figure
- …