209 research outputs found
Urbanisation and health in China.
China has seen the largest human migration in history, and the country's rapid urbanisation has important consequences for public health. A provincial analysis of its urbanisation trends shows shifting and accelerating rural-to-urban migration across the country and accompanying rapid increases in city size and population. The growing disease burden in urban areas attributable to nutrition and lifestyle choices is a major public health challenge, as are troubling disparities in health-care access, vaccination coverage, and accidents and injuries in China's rural-to-urban migrant population. Urban environmental quality, including air and water pollution, contributes to disease both in urban and in rural areas, and traffic-related accidents pose a major public health threat as the country becomes increasingly motorised. To address the health challenges and maximise the benefits that accompany this rapid urbanisation, innovative health policies focused on the needs of migrants and research that could close knowledge gaps on urban population exposures are needed
Using variable importance measures from causal inference to rank risk factors of schistosomiasis infection in a rural setting in China
Abstract Background Schistosomiasis infection, contracted through contact with contaminated water, is a global public health concern. In this paper we analyze data from a retrospective study reporting water contact and schistosomiasis infection status among 1011 individuals in rural China. We present semi-parametric methods for identifying risk factors through a comparison of three analysis approaches: a prediction-focused machine learning algorithm, a simple main-effects multivariable regression, and a semi-parametric variable importance (VI) estimate inspired by a causal population intervention parameter. Results The multivariable regression found only tool washing to be associated with the outcome, with a relative risk of 1.03 and a 95% confidence interval (CI) of 1.01-1.05. Three types of water contact were found to be associated with the outcome in the semi-parametric VI analysis: July water contact (VI estimate 0.16, 95% CI 0.11-0.22), water contact from tool washing (VI estimate 0.88, 95% CI 0.80-0.97), and water contact from rice planting (VI estimate 0.71, 95% CI 0.53-0.96). The July VI result, in particular, indicated a strong association with infection status - its causal interpretation implies that eliminating water contact in July would reduce the prevalence of schistosomiasis in our study population by 84%, or from 0.3 to 0.05 (95% CI 78%-89%). Conclusions The July VI estimate suggests possible within-season variability in schistosomiasis infection risk, an association not detected by the regression analysis. Though there are many limitations to this study that temper the potential for causal interpretations, if a high-risk time period could be detected in something close to real time, new prevention options would be opened. Most importantly, we emphasize that traditional regression approaches are usually based on arbitrary pre-specified models, making their parameters difficult to interpret in the context of real-world applications. Our results support the practical application of analysis approaches that, in contrast, do not require arbitrary model pre-specification, estimate parameters that have simple public health interpretations, and apply inference that considers model selection as a source of variation
Evaluation of Mammalian and Intermediate Host Surveillance Methods for Detecting Schistosomiasis Reemergence in Southwest China
Schistosomiasis has reemerged in China in regions where it was previously controlled. As reductions in schistosomiasis, a water-born parasitic infection, prompt consideration of schistosomiasis elimination, surveillance strategies that can signal reemergence and prevent further lapses in control are needed. We examined the distribution of Schistosoma japonicum, the species that causes schistosomiasis in China, in 53 villages. The villages were located in regions of Sichuan province where schistosomiasis reemergence had been documented by public health authorities. We tested three key reservoirs, humans, cows and water buffalo, and freshwater snails for S. japonicum infection in an effort to identify high-risk populations and evaluate their ability to signal reemergence. Human and bovine infections were common, detected in 35 villages and 23 villages, respectively, but infected snails were rare, found in only one village. Two commonly used surveillance methods, hospital reports of acute schistosomiasis and surveys for S. japonicum-infected snails, grossly underestimated the number of villages where human infections were present. Schistosomiasis was widespread in the region we studied, highlighting the danger reemergence poses to disease elimination programs. Surveillance systems that monitor high-risk populations such as older adults or bovine owners should be considered to promote detection of reemergence
A pediatric airway atlas and its application in subglottic stenosis
Young children with upper airway problems are at risk for hypoxia, respiratory insufficiency and long term morbidity. Computational models and quantitative analysis would reveal airway growth patterns and benefit clinical care. To capture expected growth patterns we propose a method to build a pediatric airway atlas as a function of age. The atlas is based on a simplified airway model in combination with kernel regression. We show experimental results on children with subglottic stenosis to demonstrate that our method is able to track and measure the stenosis in pediatric airways
Toward a better understanding of task demands, workload, and performance during physician-computer interactions
OBJECTIVE: To assess the relationship between (1) task demands and workload, (2) task demands and performance, and (3) workload and performance, all during physician-computer interactions in a simulated environment.
METHODS: Two experiments were performed in 2 different electronic medical record (EMR) environments: WebCIS (n = 12) and Epic (n = 17). Each participant was instructed to complete a set of prespecified tasks on 3 routine clinical EMR-based scenarios: urinary tract infection (UTI), pneumonia (PN), and heart failure (HF). Task demands were quantified using behavioral responses (click and time analysis). At the end of each scenario, subjective workload was measured using the NASA-Task-Load Index (NASA-TLX). Physiological workload was measured using pupillary dilation and electroencephalography (EEG) data collected throughout the scenarios. Performance was quantified based on the maximum severity of omission errors.
RESULTS: Data analysis indicated that the PN and HF scenarios were significantly more demanding than the UTI scenario for participants using WebCIS (P < .01), and that the PN scenario was significantly more demanding than the UTI and HF scenarios for participants using Epic (P < .01). In both experiments, the regression analysis indicated a significant relationship only between task demands and performance (P < .01).
DISCUSSION: Results suggest that task demands as experienced by participants are related to participants' performance. Future work may support the notion that task demands could be used as a quality metric that is likely representative of performance, and perhaps patient outcomes.
CONCLUSION: The present study is a reasonable next step in a systematic assessment of how task demands and workload are related to performance in EMR-evolving environments
A Systems-Based Analysis of Plasmodium vivax Lifecycle Transcription from Human to Mosquito
Most of the 250 million malaria cases outside of Africa are caused by the parasite Plasmodium vivax. Although drugs can be used to treat P. vivax malaria, drug resistance is spreading and there is no available vaccine. Because this species cannot be readily grown in the laboratory there are added challenges to understanding the function of the many hypothetical genes in the genome. We isolated transcriptional messages from parasites growing in human blood and in mosquitoes, labeled the messages and measured how their levels for different parasite growth conditions. The data for 5,419 parasite genes shows extensive changes as the parasite moves between human and mosquito and reveals highly expressed genes whose proteins might represent new therapeutic targets for experimental vaccines. We discover sets of genes that are likely to play a role in the earliest stages of hepatocyte infection. We find intriguing differences in the expression patterns of different blood stage parasites that may be related to host-response status
Recommended from our members
Impact of Outdoor Air Pollution on Indoor Air Quality in Low-Income Homes during Wildfire Seasons
Indoor and outdoor number concentrations of fine particulate matter (PM2.5), black carbon (BC), carbon monoxide (CO), and nitrogen dioxide (NO2) were monitored continuously for two to seven days in 28 low-income homes in Denver, Colorado, during the 2016 and 2017 wildfire seasons. In the absence of indoor sources, all outdoor pollutant concentrations were higher than indoors except for CO. Results showed that long-range wildfire plumes elevated median indoor PM2.5 concentrations by up to 4.6 times higher than outdoors. BC, CO, and NO2 mass concentrations were higher indoors in homes closer to roadways compared to those further away. Four of the homes with mechanical ventilation systems had 18% higher indoor/outdoor (I/O) ratios of PM2.5 and 4% higher I/O ratios of BC compared to other homes. Homes with exhaust stove hoods had PM2.5 I/O ratios 49% less than the homes with recirculating hoods and 55% less than the homes with no stove hoods installed. Homes with windows open for more than 12 hours a day during sampling had indoor BC 2.4 times higher than homes with windows closed. This study provides evidence that long-range wildfire plumes, road proximity, and occupant behavior have a combined effect on indoor air quality in low-income homes.</p
- β¦