30 research outputs found
Recommended from our members
New photoelectric injector design for the Los Alamos National Laboratory XUV FEL accelerator
The injector for the Los Alamos National Laboratory XUV FEL accelerator has been redesigned to provide more charge to the wiggler. The new design can deliver 8nC of charge within 20 ps with a normalized 90% emittance of <25 /Pi//center dot/mm/center dot/mrad to the wiggler at an energy of 200 MeV. In addition to the new design of the injector, we analyze the emittance growth and subsequent reduction through the injector, including different mechanisms for emittance growth and the methods used to eliminate the correlated emittance. 7 refs., 5 figs
Recommended from our members
Emittance growth of an nonequilibrium intense electron beam in a transport channel with discrete focusing
The author analyzes the emittance growth mechanisms for a continuous, intense electron beam in a focusing transport channel, over distances short enough that the beam does not reach equilibrium. The emittance grows from the effect of nonlinear forces arising from (1) current density nonuniformities, (2) energy variations leading to nonlinearities in the space-charge force even if the current density is uniform, (3) axial variations in the radial vector potential, (4) an axial velocity shear along the beam, and (5) an energy redistribution of the beam as the beam compresses or expands. The emittance growth is studied analytically and numerically for the cases of balanced flow, tight focusing, and slight beam scalloping, and is additionally studied numerically for an existing 6-MeV induction linear accelerator. Rules for minimizing the emittance along a beamline are established. Some emittance growth will always occur, both from current density nonuniformities that arise along the transport and from beam radius changes along the transport
Exploring Minimal Scenarios to Produce Transversely Bright Electron Beams Using the Eigen-Emittance Concept
Next generation hard X-ray free electron lasers require electron beams with
low transverse emittance. One proposal to achieve these low emittances is to
exploit the eigen-emittance values of the beam. The eigen-emittances are
invariant under linear beam transport and equivalent to the emittances in an
uncorrelated beam. If a correlated beam with two small eigen-emittances can be
produced, removal of the correlations via appropriate optics will lead to two
small emittance values, provided non-linear effects are not too large. We study
how such a beam may be produced using minimal linear correlations. We find it
is theoretically possible to produce such a beam, however it may be more
difficult to realize in practice. We identify linear correlations that may lead
to physically realizable emittance schemes and discuss promising future
avenues.Comment: 7 pages, 2 figures, to appear in NIM
Recommended from our members
Coherent synchrotron radiation experiments for the LCLS
The authors describe a coherent synchrotron radiation experiment planned at Los Alamos to support the design of the Linac Coherent Light Source (LCLS) x-ray FEL. Preliminary simulations of the LCLS compressors show that a clever tuning strategy can be used to minimize the electron`s beam emittance growth due to noninertial space-charge forces by employing a delicate cancellation of these forces. The purpose of the Los Alamos experiment, using a sub-picosecond chicane compressor, is to benchmark these simulations tools. In this paper, the authors present detailed numerical simulations of the experiment, and point out unique signatures of this effect that are measurable. As predicted previously, the largest emittance growths and induced energy spreads result from the nonradiative components of this space-charge force
International workshop on next generation gamma-ray source
A workshop on The Next Generation Gamma-Ray Source sponsored by the Office of Nuclear Physics at the Department of Energy, was held November 17-19, 2016 in Bethesda, Maryland. The goals of the workshop were to identify basic and applied research opportunities at the frontiers of nuclear physics that would be made possible by the beam capabilities of an advanced laser Compton beam facility. To anchor the scientific vision to realistically achievable beam specifications using proven technologies, the workshop brought together experts in the fields of electron accelerators, lasers, and optics to examine the technical options for achieving the beam specifications required by the most compelling parts of the proposed research programs. An international assembly of participants included current and prospective γ-ray beam users, accelerator and light-source physicists, and federal agency program managers. Sessions were organized to foster interactions between the beam users and facility developers, allowing for information sharing and mutual feedback between the two groups. The workshop findings and recommendations are summarized in this whitepaper
International workshop on next generation gamma-ray source
A workshop on The Next Generation Gamma-Ray Source sponsored by the Office of Nuclear Physics at the Department of Energy, was held November 17-19, 2016 in Bethesda, Maryland. The goals of the workshop were to identify basic and applied research opportunities at the frontiers of nuclear physics that would be made possible by the beam capabilities of an advanced laser Compton beam facility. To anchor the scientific vision to realistically achievable beam specifications using proven technologies, the workshop brought together experts in the fields of electron accelerators, lasers, and optics to examine the technical options for achieving the beam specifications required by the most compelling parts of the proposed research programs. An international assembly of participants included current and prospective γ-ray beam users, accelerator and light-source physicists, and federal agency program managers. Sessions were organized to foster interactions between the beam users and facility developers, allowing for information sharing and mutual feedback between the two groups. The workshop findings and recommendations are summarized in this whitepaper
Recommended from our members
Photoelectric injector design code
We will describe a computer code based on an analysis for an emittance growth mechanism for electron beams in photoelectric injectors. The analysis leads to a generic injector design with a single external solenoid used for both focusing the beam and reducing the correlated emittance. The position of the solenoid is given by a complicated integral expression, depending on the accelerating gradient and rf focusing. The computer code described here integrates this expression and calculates the best solenoid lens position for a given phasing and field amplitudes of the accelerating cavities. 5 refs., 2 figs
Recommended from our members
Emittance growth caused by bends in the Los Alamos free-electron laser energy recovery experiment
Experimentally transporting the beam from the wiggler to the decelerators in the energy recovery experiment (ERX) at the Los Alamos National Laboratory free-electron laser was more difficult than expected because of the large initial emittance in the beam. This emittance was apparently caused in an early 60/sup 0/ achromatic bend. To get this beam through subsequent bends without wall interception, the quadrupole focusing had to be changed from the design amount; as a result, the emittance grew further. This paper discusses various mechanisms for this emittance growth in the 60/sup 0/ bend, including effects caused by path changes in the bend resulting from wake-field-induced energy changes of particles in the beam and examines emittance filters, ranging from a simple aperture near a beam crossover to more complicated telescope schemes designed to regain the original emittance before the 60/sup 0/ bend
Recommended from our members
Rippled-beam free-electron laser
The authors describe a new microwave generation mechanism involving a scalloping annular electron beam. The beam interacts with the axial electric field of a TM{sub 0n} mode in a smooth circular waveguide through the axial free-electron laser interaction, in which the beam ripple period is synchronous with the phase slippage of the rf mode relative to the electron beam. Due to nonlinearities in the orbit equation, the interaction can be made autoresonant, where the phase and amplitude of the gain is independent of the beam energy