8,431 research outputs found
Dendritic Actin Filament Nucleation Causes Traveling Waves and Patches
The polymerization of actin via branching at a cell membrane containing
nucleation-promoting factors is simulated using a stochastic-growth
methodology. The polymerized-actin distribution displays three types of
behavior: a) traveling waves, b) moving patches, and c) random fluctuations.
Increasing actin concentration causes a transition from patches to waves. The
waves and patches move by a treadmilling mechanism which does not require
myosin II. The effects of downregulation of key proteins on actin wave behavior
are evaluated.Comment: 10 pages, 4 figure
Order-N Density-Matrix Electronic-Structure Method for General Potentials
A new order-N method for calculating the electronic structure of general
(non-tight-binding) potentials is presented. The method uses a combination of
the ``purification''-based approaches used by Li, Nunes and Vanderbilt, and
Daw, and a representation of the density matrix based on ``travelling basis
orbitals''. The method is applied to several one-dimensional examples,
including the free electron gas, the ``Morse'' bound-state potential, a
discontinuous potential that mimics an interface, and an oscillatory potential
that mimics a semiconductor. The method is found to contain Friedel
oscillations, quantization of charge in bound states, and band gap formation.
Quantitatively accurate agreement with exact results is found in most cases.
Possible advantages with regard to treating electron-electron interactions and
arbitrary boundary conditions are discussed.Comment: 13 pages, REVTEX, 7 postscript figures (not quite perfect
Modeling of Covalent Bonding in Solids by Inversion of Cohesive Energy Curves
We provide a systematic test of empirical theories of covalent bonding in
solids using an exact procedure to invert ab initio cohesive energy curves. By
considering multiple structures of the same material, it is possible for the
first time to test competing angular functions, expose inconsistencies in the
basic assumption of a cluster expansion, and extract general features of
covalent bonding. We test our methods on silicon, and provide the direct
evidence that the Tersoff-type bond order formalism correctly describes
coordination dependence. For bond-bending forces, we obtain skewed angular
functions that favor small angles, unlike existing models. As a
proof-of-principle demonstration, we derive a Si interatomic potential which
exhibits comparable accuracy to existing models.Comment: 4 pages revtex (twocolumn, psfig), 3 figures. Title and some wording
(but no content) changed since original submission on 24 April 199
The Theory of the Interleaving Distance on Multidimensional Persistence Modules
In 2009, Chazal et al. introduced -interleavings of persistence
modules. -interleavings induce a pseudometric on (isomorphism
classes of) persistence modules, the interleaving distance. The definitions of
-interleavings and generalize readily to multidimensional
persistence modules. In this paper, we develop the theory of multidimensional
interleavings, with a view towards applications to topological data analysis.
We present four main results. First, we show that on 1-D persistence modules,
is equal to the bottleneck distance . This result, which first
appeared in an earlier preprint of this paper, has since appeared in several
other places, and is now known as the isometry theorem. Second, we present a
characterization of the -interleaving relation on multidimensional
persistence modules. This expresses transparently the sense in which two
-interleaved modules are algebraically similar. Third, using this
characterization, we show that when we define our persistence modules over a
prime field, satisfies a universality property. This universality result
is the central result of the paper. It says that satisfies a stability
property generalizing one which is known to satisfy, and that in
addition, if is any other pseudometric on multidimensional persistence
modules satisfying the same stability property, then . We also show
that a variant of this universality result holds for , over arbitrary
fields. Finally, we show that restricts to a metric on isomorphism
classes of finitely presented multidimensional persistence modules.Comment: Major revision; exposition improved throughout. To appear in
Foundations of Computational Mathematics. 36 page
Effects of three-nucleon forces and two-body currents on Gamow-Teller strengths
We optimize chiral interactions at next-to-next-to leading order to
observables in two- and three-nucleon systems, and compute Gamow-Teller
transitions in carbon-14, oxygen-22 and oxygen-24 using consistent two-body
currents. We compute spectra of the daughter nuclei nitrogen-14, fluorine-22
and fluorine-24 via an isospin-breaking coupled-cluster technique, with several
predictions. The two-body currents reduce the Ikeda sum rule, corresponding to
a quenching factor q^2 ~ 0.84-0.92 of the axial-vector coupling. The half life
of carbon-14 depends on the energy of the first excited 1+ state, the
three-nucleon force, and the two-body current
Solid-Liquid Phase Diagrams for Binary Metallic Alloys: Adjustable Interatomic Potentials
We develop a new approach to determining LJ-EAM potentials for alloys and use
these to determine the solid-liquid phase diagrams for binary metallic alloys
using Kofke's Gibbs-Duhem integration technique combined with semigrand
canonical Monte Carlo simulations. We demonstrate that it is possible to
produce a wide-range of experimentally observed binary phase diagrams (with no
intermetallic phases) by reference to the atomic sizes and cohesive energies of
the two elemental materials. In some cases, it is useful to employ a single
adjustable parameter to adjust the phase diagram (we provided a good choice for
this free parameter). Next, we perform a systematic investigation of the effect
of relative atomic sizes and cohesive energies of the elements on the binary
phase diagrams. We then show that this approach leads to good agreement with
several experimental binary phase diagrams. The main benefit of this approach
is not the accurately reproduction of experimental phase diagrams, but rather
to provide a method by which material properties can be continuously changed in
simulations studies. This is one of the keys to the use of atomistic
simulations to understand mechanisms and properties in a manner not available
to experiment
Recommended from our members
Review: Consumption-stage food waste reduction interventions - What works and how to design better interventions
Food waste prevention has become an issue of international concern, with Sustainable Development Goal 12.3 aiming to halve per capita global food waste at the retail and consumer levels by 2030. However there is no review that has considered the effectiveness of interventions aimed at preventing food waste in the consumption stages of the food system. This significant gap, if filled, could help support those working to reduce food waste in the developed world, providing knowledge of what interventions are specifically effective at preventing food waste.
This paper fills this gap, identifying and summarizing food-waste prevention interventions at the consumption/consumer stage of the supply chain via a rapid review of global academic literature from 2006 to 2017.
We identify 17 applied interventions that claim to have achieved food waste reductions. Of these, 13 quantified food waste reductions. Interventions that changed the size or type of plates were shown to be effective (up to 57% food waste reduction) in hospitality environments. Changing nutritional guidelines in schools were reported to reduce vegetable waste by up to 28%, indicating that healthy diets can be part of food waste reduction strategies. Information campaigns were also shown to be effective with up to 28% food waste reduction in a small sample size intervention.
Cooking classes, fridge cameras, food sharing apps, advertising and information sharing were all reported as being effective but with little or no robust evidence provided. This is worrying as all these methods are now being proposed as approaches to reduce food waste and, except for a few studies, there is no reproducible quantified evidence to assure credibility or success. To strengthen current results, a greater number of longitudinal and larger sample size intervention studies are required. To inform future intervention studies, this paper proposes a standardised guideline, which consists of: (1) intervention design; (2) monitoring and measurement; (3) moderation and mediation; (4) reporting; (5) systemic effects.
Given the importance of food-waste reduction, the findings of this review highlight a significant evidence gap, meaning that it is difficult to make evidence-based decisions to prevent or reduce consumption-stage food waste in a cost-effective manner
Emission Lines in the Spectrum of the 3He Star 3 Cen A
Emission in the 4d - 4f transitions of MnII (multiplet 13, 6122-6132 Ang), in
the 4f - 6g transitions of PII, and in 6149.5 Ang of HgII has been detected in
the spectrum of the helium weak star 3 Centauri A (B5 III-IVp). Weaker emission
from the same MnII multiplet is also seen in the hot, mild HgMn star 46 Aquila
(B9 III).It is suggested that the emission is of photospheric origin and may be
evidence for the stratification of manganese, phosphorus and mercury in the
photosphere of 3 CenA, and of manganese in 46Aql.Comment: 16 pages, 3 figure
- …