533 research outputs found
High- Elastic -scattering and QCD predictions
In the framework of pertubative QCD it is argued that in the elastic
-scattering at few the light-cone-frame
helicity-flip amplitudes could not be omitted. The obtained ratio
of Rosenbluth structure functions is shown to be in a good agreement with
experimental data. The high behavior of tensor analysing power
is discussed.Comment: 6 pages + 2 ps figures not included, LaTeX, ITP-93-33
Angular Conditions,Relations between Breit and Light-Front Frames, and Subleading Power Corrections
We analyze the current matrix elements in the general collinear (Breit)
frames and find the relation between the ordinary (or canonical) helicity
amplitudes and the light-front helicity amplitudes. Using the conservation of
angular momentum, we derive a general angular condition which should be
satisfied by the light-front helicity amplitudes for any spin system. In
addition, we obtain the light-front parity and time-reversal relations for the
light-front helicity amplitudes. Applying these relations to the spin-1 form
factor analysis, we note that the general angular condition relating the five
helicity amplitudes is reduced to the usual angular condition relating the four
helicity amplitudes due to the light-front time-reversal condition. We make
some comments on the consequences of the angular condition for the analysis of
the high- deuteron electromagnetic form factors, and we further apply the
general angular condition to the electromagnetic transition between spin-1/2
and spin-3/2 systems and find a relation useful for the analysis of the
N- transition form factors. We also discuss the scaling law and the
subleading power corrections in the Breit and light-front frames.Comment: 24 pages,2 figure
Theory of parity violation in compound nuclear states; one particle aspects
In this work we formulate the reaction theory of parity violation in compound
nuclear states using Feshbach's projection operator formalism. We derive in
this framework a complete set of terms that contribute to the longitudinal
asymmetry measured in experiments with polarized epithermal neutrons. We also
discuss the parity violating spreading width resulting from this formalism. We
then use the above formalism to derive expressions which hold in the case when
the doorway state approximation is introduced. In applying the theory we limit
ourselves in this work to the case when the parity violating potential and the
strong interaction are one-body. In this approximation, using as the doorway
the giant spin-dipole resonance and employing well known optical potentials and
a time-reversal even, parity odd one-body interaction we calculate or estimate
the terms we derived. In our calculations we explicitly orthogonalize the
continuum and bound wave functions. We find the effects of orthogonalization to
be very important. Our conclusion is that the present one-body theory cannot
explain the average longitudinal asymmetry found in the recent polarized
neutron experiments. We also confirm the discrepancy, first pointed out by
Auerbach and Bowman, that emerges, between the calculated average asymmetry and
the parity violating spreading width, when distant doorways are used in the
theory.Comment: 37 pages, REVTEX, 5 figures not included (Postscript, available from
the authors
Perturbative QCD and factorization of coherent pion photoproduction on the deuteron
We analyze the predictions of perturbative QCD for pion photoproduction on
the deuteron, gamma D -> pi^0 D, at large momentum transfer using the reduced
amplitude formalism. The cluster decomposition of the deuteron wave function at
small binding only allows the nuclear coherent process to proceed if each
nucleon absorbs an equal fraction of the overall momentum transfer.
Furthermore, each nucleon must scatter while remaining close to its mass shell.
Thus the nuclear photoproduction amplitude, M_{gamma D -> pi^0 D}(u,t),
factorizes as a product of three factors: (1) the nucleon photoproduction
amplitude, M_{gamma N_1 -> pi^0 N_1}(u/4,t/4), at half of the overall momentum
transfer, (2) a nucleon form factor, F_{N_2}(t/4), at half the overall momentum
transfer, and (3) the reduced deuteron form factor, f_d(t), which according to
perturbative QCD, has the same monopole falloff as a meson form factor. A
comparison with the recent JLAB data for gamma D -> pi^0 D of Meekins et al.
[Phys. Rev. C 60, 052201 (1999)] and the available gamma p -> pi^0 p data shows
good agreement between the perturbative QCD prediction and experiment over a
large range of momentum transfers and center of mass angles. The reduced
amplitude prediction is consistent with the constituent counting rule, p^11_T
M_{gamma D -> pi^0 D} -> F(theta_cm), at large momentum transfer. This is found
to be consistent with measurements for photon lab energies E_gamma > 3 GeV at
theta_cm=90 degrees and \elab > 10 GeV at 136 degrees.Comment: RevTeX 3.1, 17 pages, 6 figures; v2: incorporates minor changes as
version accepted by Phys Rev
Octet-Baryon Form Factors in the Diquark Model
We present an alternative parameterization of the quark-diquark model of
baryons which particularly takes care of the most recent proton electric
form-factor data from the E136 experiment at SLAC. In addition to
electromagnetic form factors of the nucleon, for which good agreement with data
is achieved, we discuss the weak axial vector form factor of the nucleon as
well as electromagnetic form factors of and hyperons.
Technical advance in calculating the pertinent analytic expressions within
perturbative quantum chromodynamics is gained by formulating the wave function
of the quark-diquark system in a covariant way. Finally, we also comment on the
influence of Sudakov corrections within the scope of the diquark model.Comment: 16 pages, WU-B 93-07, latex, uuencoded postscript files of 7 figures
appended at the end of the latex fil
Excited Baryons in Lattice QCD
We present first results for the masses of positive and negative parity
excited baryons calculated in lattice QCD using an O(a^2)-improved gluon action
and a fat-link irrelevant clover (FLIC) fermion action in which only the
irrelevant operators are constructed with APE-smeared links. The results are in
agreement with earlier calculations of N^* resonances using improved actions
and exhibit a clear mass splitting between the nucleon and its chiral partner.
An correlation matrix analysis reveals two low-lying J^P=(1/2)^- states with a
small mass splitting. The study of different Lambda interpolating fields
suggests a similar splitting between the lowest two Lambda1/2^- octet states.
However, the empirical mass suppression of the Lambda^*(1405) is not evident in
these quenched QCD simulations, suggesting a potentially important role for the
meson cloud of the Lambda^*(1405) and/or a need for more exotic interpolating
fields.Comment: Correlation matrix analysis performed. Increased to 400
configurations. 22 pages, 13 figures, 15 table
Hybrid stars with the color dielectric and the MIT bag models
We study the hadron-quark phase transition in the interior of neutron stars
(NS). For the hadronic sector, we use a microscopic equation of state (EOS)
involving nucleons and hyperons derived within the Brueckner-Bethe-Goldstone
many-body theory, with realistic two-body and three-body forces. For the
description of quark matter, we employ both the MIT bag model with a density
dependent bag constant, and the color dielectric model. We calculate the
structure of NS interiors with the EOS comprising both phases, and we find that
the NS maximum masses are never larger than 1.7 solar masses, no matter the
model chosen for describing the pure quark phase.Comment: 11 pages, 5 figures, submitted to Phys. Rev.
Neutron structure function and inclusive DIS from H-3 and He-3 at large Bjorken-x
A detailed study of inclusive deep inelastic scattering (DIS) from mirror A =
3 nuclei at large values of the Bjorken variable x is presented. The main
purpose is to estimate the theoretical uncertainties on the extraction of the
neutron DIS structure function from such nuclear measurements. On one hand,
within models in which no modification of the bound nucleon structure functions
is taken into account, we have investigated the possible uncertainties arising
from: i) charge symmetry breaking terms in the nucleon-nucleon interaction, ii)
finite Q**2 effects neglected in the Bjorken limit, iii) the role of different
prescriptions for the nucleon Spectral Function normalization providing baryon
number conservation, and iv) the differences between the virtual nucleon and
light cone formalisms. Although these effects have been not yet considered in
existing analyses, our conclusion is that all these effects cancel at the level
of ~ 1% for x < 0.75 in overall agreement with previous findings. On the other
hand we have considered several models in which the modification of the bound
nucleon structure functions is accounted for to describe the EMC effect in DIS
scattering from nuclei. It turns out that within these models the cancellation
of nuclear effects is expected to occur only at a level of ~ 3%, leading to an
accuracy of ~ 12 % in the extraction of the neutron to proton structure
function ratio at x ~ 0.7 -0.8$. Another consequence of considering a broad
range of models of the EMC effect is that the previously suggested iteration
procedure does not improve the accuracy of the extraction of the neutron to
proton structure function ratio.Comment: revised version to appear in Phys. Rev. C; main modifications in
Section 4; no change in the conclusion
- âŠ