18,070 research outputs found
A study of the break-up characteristics of Chena River Basin using ERTS imagery
The author has identified the following significant results. The Chena River Basin was selected because of the availability of ground truth data for comparison. Very good agreement for snow distribution and rates of ablation was found between the ERTS-1 imagery, the snowmelt model, and field measurements. Monitoring snowmelt rates for relatively small basins appears to be practical. The main limitation of the ERTS-1 imagery is the interval of coverage. More frequent overflights providing coverage are needed for the study of transient hydrologic events. ERTS-1 data is most useful when used in conjunction with snowmelt prediction models and existing snow course data. These results should prove very useful in preliminary assessment of hydrologic conditions in ungaged watersheds and will provide a tool for month-to-month volume forecasting
Analysis of shell-type structures subjected to time-dependent mechanical and thermal loading
A general mathematical model and solution methodologies are being developed for analyzing structural response of thin, metallic shell-type structures under large transient, cyclic, or static thermomechanical loads. Among the system responses, which were associated with these load conditions, were thermal buckling, creep buckling, and ratcheting. Thus, geometric as well as material-type nonlinearities (of high order) can be anticipated and must be considered in the development of the mathematical model. Furthermore, this must also be accommodated in the solution process
Break-up characteristics of the Chena River watershed, central Alaska
The author has identified the following significant results. The snow melt for a small watershed (5130 sq km) in Central Alaska was successfully monitored with ERTS-1 imagery. Aerial photography was used as supporting data for periods without satellite coverage. Comparison both with actual measurements and with a computer model showed good agreement
A finite element program for postbuckling calculations (PSTBKL)
The object of the research reported herein was to develop a general mathematical model and solution methodologies for analyzing the structural response of thin, metallic shell structures under large transient, cyclic, or static thermochemical loads. This report describes the computer program resulting from the research. Among the system responses associated with these loads and conditions are thermal buckling, creep buckling, and ratcheting. Thus geometric and material nonlinearities (of high order) have been anticipated and are considered in developing the mathematical model. The methodology is demonstrated through different problems of extension, shear, and of planar curved beams. Moreover, importance of the inclusion of large strains is clearly demonstrated, through the chosen applications
Non-isothermal elastoviscoplastic analysis of planar curved beams
The development of a general mathematical model and solution methodologies, to examine the behavior of thin structural elements such as beams, rings, and arches, subjected to large nonisothermal elastoviscoplastic deformations is presented. Thus, geometric as well as material type nonlinearities of higher order are present in the analysis. For this purpose a complete true abinito rate theory of kinematics and kinetics for thin bodies, without any restriction on the magnitude of the transformation is presented. A previously formulated elasto-thermo-viscoplastic material constitutive law is employed in the analysis. The methodology is demonstrated through three different straight and curved beams problems
Analysis of large, non-isothermal elastic-visco-plastic deformations
The development of a general mathematical model and solutions of test problems to analyze large nonisothermal elasto-visco-plastic deformatisms of structures is discussed. Geometric and material type nonlinearities of higher order are present in the development of the mathematical model and in the developed solution methodology
Analysis of shell type structures subjected to time dependent mechanical and thermal loading
A general mathematical model and solution methodologies for analyzing structural response of thin, metallic shell-type structures under large transient, cyclic or static thermomechanical loads is considered. Among the system responses, which are associated with these load conditions, are thermal buckling, creep buckling and ratchetting. Thus, geometric as well as material-type nonlinearities (of high order) can be anticipated and must be considered in the development of the mathematical model
Dynamic stall modeling and correlation with experimental data on airfoils and rotors
Two methods for modeling dynamic stall have been developed. The alpha, A, B method generates lift and pitching moments as functions of angle of attack and its first two time derivatives. The coefficients are derived from experimental data for oscillating airfoils. The Time Delay Method generates the coefficients from steady state airfoil characteristics and an associated time delay in stall beyond the steady state stall angle. Correlation with three types of test data shows that the alpha, A, B method is somewhat better for use in predicting helicopter rotor response in forward flight. Correlation with lift and moment hysteresis loops generated for oscillating airfoils was good for both models
Leading-Log Effects in the Resonance Electroweak Form Factors
We study log corrections to inelastic scattering at high Bjorken x for Q^2
from 1 to 21 GeV^2. At issue is the presence of log corrections, which can be
absent if high x scattering has damped gluon radiation. We find logarithmic
correction of the scaling curve extrapolated to low Q^2 improves the duality
between it and the resonance plus background data in the Delta region,
indicating log corrections exist in the data. However, at W > 2 GeV and high x,
the data shows a (1-x)^3 form. Log corrections in one situation but not in
another can be reconciled by a W- or Q^2- dependent higher twist correction.Comment: 13 pages, report nos. RPI-94-N90 and WM-94-106, revtex, two figures
(available by fax or post
Spin Response and Neutrino Emissivity of Dense Neutron Matter
We study the spin response of cold dense neutron matter in the limit of zero
momentum transfer, and show that the frequency dependence of the
long-wavelength spin response is well constrained by sum-rules and the
asymptotic behavior of the two-particle response at high frequency. The
sum-rules are calculated using Auxiliary Field Diffusion Monte Carlo technique
and the high frequency two-particle response is calculated for several
nucleon-nucleon potentials. At nuclear saturation density, the sum-rules
suggest that the strength of the spin response peaks at 40--60
MeV, decays rapidly for 100 MeV, and has a sizable strength below
40 MeV. This strength at relatively low energy may lead to enhanced neutrino
production rates in dense neutron-rich matter at temperatures of relevance to
core-collapse supernova.Comment: 11 pages, 4 figures. Minor change. Published versio
- …