10 research outputs found

    Evidence of Electron Fractionalization from Photoemission Spectra in the High Temperature Superconductors

    Full text link
    In the normal state of the high temperature superconductors Bi_2Sr_2CaCu_2O_{8+delta} and La_{2-x}Sr_{x}CuO_4, and in the related ``stripe ordered'' material La_1.25Nd_0.6Sr_0.15CuO_4, there is sharp structure in the measured single hole spectral function A(k,w) considered as a function of k at fixed small binding energy w. At the same time, as a function of w at fixed k on much of the putative Fermi surface, any structure in A(k,w), other than the Fermi cutoff, is very broad. This is characteristic of the situation in which there are no stable excitations with the quantum numbers of the electron, as is the case in the one dimensional electron gas.Comment: Published versio

    On the Relationship Between the Critical Temperature and the London Penetration Depth in Layered Organic Superconductors

    Full text link
    We present an analysis of previously published measurements of the London penetration depth of layered organic superconductors. The predictions of the BCS theory of superconductivity are shown to disagree with the measured zero temperature, in plane, London penetration depth by up to two orders of magnitude. We find that fluctuations in the phase of the superconducting order parameter do not determine the superconducting critical temperature as the critical temperature predicted for a Kosterlitz--Thouless transition is more than an order of magnitude greater than is found experimentally for some materials. This places constraints on theories of superconductivity in these materials.Comment: 5 pages, 1 figur

    How to detect fluctuating order in the high-temperature superconductors

    Full text link
    We discuss fluctuating order in a quantum disordered phase proximate to a quantum critical point, with particular emphasis on fluctuating stripe order. Optimal strategies for extracting information concerning such local order from experiments are derived with emphasis on neutron scattering and scanning tunneling microscopy. These ideas are tested by application to two model systems - the exactly solvable one dimensional electron gas with an impurity, and a weakly-interacting 2D electron gas. We extensively review experiments on the cuprate high-temperature superconductors which can be analyzed using these strategies. We adduce evidence that stripe correlations are widespread in the cuprates. Finally, we compare and contrast the advantages of two limiting perspectives on the high-temperature superconductor: weak coupling, in which correlation effects are treated as a perturbation on an underlying metallic (although renormalized) Fermi liquid state, and strong coupling, in which the magnetism is associated with well defined localized spins, and stripes are viewed as a form of micro-phase separation. We present quantitative indicators that the latter view better accounts for the observed stripe phenomena in the cuprates.Comment: 43 pages, 11 figures, submitted to RMP; extensively revised and greatly improved text; one new figure, one new section, two new appendices and more reference

    Angle-resolved photoemission spectroscopy of the cuprate superconductors

    Full text link
    This paper reviews the most recent ARPES results on the cuprate superconductors and their insulating parent and sister compounds, with the purpose of providing an updated summary of the extensive literature in this field. The low energy excitations are discussed with emphasis on some of the most relevant issues, such as the Fermi surface and remnant Fermi surface, the superconducting gap, the pseudogap and d-wave-like dispersion, evidence of electronic inhomogeneity and nano-scale phase separation, the emergence of coherent quasiparticles through the superconducting transition, and many-body effects in the one-particle spectral function due to the interaction of the charge with magnetic and/or lattice degrees of freedom. The first part of the paper introduces photoemission spectroscopy in the context of strongly interacting systems, along with an update on the state-of-the-art instrumentation. The second part provides a brief overview of the scientific issues relevant to the investigation of the low energy electronic structure by ARPES. The rest of the paper is devoted to the review of experimental results from the cuprates and the discussion is organized along conceptual lines: normal-state electronic structure, interlayer interaction, superconducting gap, coherent superconducting peak, pseudogap, electron self energy and collective modes. Within each topic, ARPES data from the various copper oxides are presented.Comment: Reviews of Modern Physics, in press. A HIGH-QUALITY pdf file is available at http://www.physics.ubc.ca/~damascel/RMP_ARPES.pd

    Phenomenological holographic model of superconductivity

    No full text
    corecore