579 research outputs found
Conductivity Due to Classical Phase Fluctuations in a Model For High-T_c Superconductors
We consider the real part of the conductivity, \sigma_1(\omega), arising from
classical phase fluctuations in a model for high-T_c superconductors. We show
that the frequency integral of that conductivity, \int_0^\infty \sigma_1
d\omega, is non-zero below the superconducting transition temperature ,
provided there is some quenched disorder in the system. Furthermore, for a
fixed amount of quenched disorder, this integral at low temperatures is
proportional to the zero-temperature superfluid density, in agreement with
experiment. We calculate \sigma_1(\omega) explicitly for a model of overdamped
phase fluctuations.Comment: 4pages, 2figures, submitted to Phys.Rev.
Antiferromagnetic and van Hove Scenarios for the Cuprates: Taking the Best of Both Worlds
A theory for the high temperature superconductors is proposed. Holes are
spin-1/2, charge e, quasiparticles strongly dressed by spin fluctuations. Based
on their dispersion, it is claimed that the experimentally observed van Hove
singularities of the cuprates are likely originated by antiferromagnetic (AF)
correlations. From the two carriers problem in the 2D t-J model, an effective
Hamiltonian for holes is defined with %no free parameters. This effective model
has superconductivity in the channel, a critical
temperature at the optimal hole density, ,
and a quasiparticle lifetime linearly dependent with energy. Other experimental
results are also reproduced by the theory.Comment: 12 pages, 4 figures (on request), RevTeX (version 3.0), preprint
NHMF
Many-body effects in 16O(e,e'p)
Effects of nucleon-nucleon correlations on exclusive reactions on
closed-shell nuclei leading to single-hole states are studied using
( MeV, ) as an example. The quasi-hole wave
function, calculated from the overlap of translationally invariant many-body
variational wave functions containing realistic spatial, spin and isospin
correlations, seems to describe the initial state of the struck proton
accurately inside the nucleus, however it is too large at the surface. The
effect of short-range correlations on the final state is found to be largely
cancelled by the increase in the transparency for the struck proton. It is
estimated that the values of the spectroscopic factors obtained with the DWIA
may increase by a few percent due to correlation effects in the final state.Comment: 21 Pages, PHY-7849-TH-9
Generalized Spectral Signatures of Electron Fractionalization in Quasi-One and -Two Dimensional Molybdenum Bronzes and Superconducting Cuprates
We establish the quasi-one-dimensional Li purple bronze as a photoemission
paradigm of Luttinger liquid behavior. We also show that generalized signatures
of electron fractionalization are present in the angle resolved photoemission
spectra for quasi-two-dimensional purple bronzes and certain cuprates. An
important component of our analysis for the quasi-two-dimensional systems is
the proposal of a ``melted holon'' scenario for the k-independent background
that accompanies but does not interact with the peaks that disperse to define
the Fermi surface.Comment: 7 pages, 8 figure
Avalanches in the Weakly Driven Frenkel-Kontorova Model
A damped chain of particles with harmonic nearest-neighbor interactions in a
spatially periodic, piecewise harmonic potential (Frenkel-Kontorova model) is
studied numerically. One end of the chain is pulled slowly which acts as a weak
driving mechanism. The numerical study was performed in the limit of infinitely
weak driving. The model exhibits avalanches starting at the pulled end of the
chain. The dynamics of the avalanches and their size and strength distributions
are studied in detail. The behavior depends on the value of the damping
constant. For moderate values a erratic sequence of avalanches of all sizes
occurs. The avalanche distributions are power-laws which is a key feature of
self-organized criticality (SOC). It will be shown that the system selects a
state where perturbations are just able to propagate through the whole system.
For strong damping a regular behavior occurs where a sequence of states
reappears periodically but shifted by an integer multiple of the period of the
external potential. There is a broad transition regime between regular and
irregular behavior, which is characterized by multistability between regular
and irregular behavior. The avalanches are build up by sound waves and shock
waves. Shock waves can turn their direction of propagation, or they can split
into two pulses propagating in opposite directions leading to transient
spatio-temporal chaos. PACS numbers: 05.70.Ln,05.50.+q,46.10.+zComment: 33 pages (RevTex), 15 Figures (available on request), appears in
Phys. Rev.
Avalanches and the Renormalization Group for Pinned Charge-Density Waves
The critical behavior of charge-density waves (CDWs) in the pinned phase is
studied for applied fields increasing toward the threshold field, using
recently developed renormalization group techniques and simulations of
automaton models. Despite the existence of many metastable states in the pinned
state of the CDW, the renormalization group treatment can be used successfully
to find the divergences in the polarization and the correlation length, and, to
first order in an expansion, the diverging time scale. The
automaton models studied are a charge-density wave model and a ``sandpile''
model with periodic boundary conditions; these models are found to have the
same critical behavior, associated with diverging avalanche sizes. The
numerical results for the polarization and the diverging length and time scales
in dimensions are in agreement with the analytical treatment. These
results clarify the connections between the behaviour above and below
threshold: the characteristic correlation lengths on both sides of the
transition diverge with different exponents. The scaling of the distribution of
avalanches on the approach to threshold is found to be different for automaton
and continuous-variable models.Comment: 29 pages, 11 postscript figures included, REVTEX v3.0 (dvi and PS
files also available by anonymous ftp from external.nj.nec.com in directory
/pub/alan/cdwfigs
Nature of the Electronic Excitations near the Brillouin Zone Boundary of BiSrCaCuO
Based on angle resolved photoemission spectra measured on different systems
at different dopings, momenta and photon energies, we show that the anomalously
large spectral linewidth in the region of optimal doped and
underdoped BiSrCaCuO has significant contributions
from the bilayer splitting, and that the scattering rate in this region is
considerably smaller than previously estimated. This new picture of the
electronic excitation near puts additional experimental constraints
on various microscopic theories and data analysis.Comment: 5 pages, 4 figure
Exact spectra, spin susceptibilities and order parameter of the quantum Heisenberg antiferromagnet on the triangular lattice
Exact spectra of periodic samples are computed up to .
Evidence of an extensive set of low lying levels, lower than the softest
magnons, is exhibited.
These low lying quantum states are degenerated in the thermodynamic limit;
their symmetries and dynamics as well as their finite-size scaling are strong
arguments in favor of N\'eel order.
It is shown that the N\'eel order parameter agrees with first-order spin-wave
calculations. A simple explanation of the low energy dynamics is given as well
as the numerical determinations of the energies, order parameter and spin
susceptibilities of the studied samples. It is shown how suitable boundary
conditions, which do not frustrate N\'eel order, allow the study of samples
with spins.
A thorough study of these situations is done in parallel with the more
conventional case .Comment: 36 pages, REVTeX 3.0, 13 figures available upon request, LPTL
preprin
Inflation, cold dark matter, and the central density problem
A problem with high central densities in dark halos has arisen in the context
of LCDM cosmologies with scale-invariant initial power spectra. Although n=1 is
often justified by appealing to the inflation scenario, inflationary models
with mild deviations from scale-invariance are not uncommon and models with
significant running of the spectral index are plausible. Even mild deviations
from scale-invariance can be important because halo collapse times and
densities depend on the relative amount of small-scale power. We choose several
popular models of inflation and work out the ramifications for galaxy central
densities. For each model, we calculate its COBE-normalized power spectrum and
deduce the implied halo densities using a semi-analytic method calibrated
against N-body simulations. We compare our predictions to a sample of dark
matter-dominated galaxies using a non-parametric measure of the density. While
standard n=1, LCDM halos are overdense by a factor of 6, several of our example
inflation+CDM models predict halo densities well within the range preferred by
observations. We also show how the presence of massive (0.5 eV) neutrinos may
help to alleviate the central density problem even with n=1. We conclude that
galaxy central densities may not be as problematic for the CDM paradigm as is
sometimes assumed: rather than telling us something about the nature of the
dark matter, galaxy rotation curves may be telling us something about inflation
and/or neutrinos. An important test of this idea will be an eventual consensus
on the value of sigma_8, the rms overdensity on the scale 8 h^-1 Mpc. Our
successful models have values of sigma_8 approximately 0.75, which is within
the range of recent determinations. Finally, models with n>1 (or sigma_8 > 1)
are highly disfavored.Comment: 13 pages, 6 figures. Minor changes made to reflect referee's
Comments, error in Eq. (18) corrected, references updated and corrected,
conclusions unchanged. Version accepted for publication in Phys. Rev. D,
scheduled for 15 August 200
On the derivative of the associated Legendre function of the first kind of integer order with respect to its degree
In our recent works [R. Szmytkowski, J. Phys. A 39 (2006) 15147; corrigendum:
40 (2007) 7819; addendum: 40 (2007) 14887], we have investigated the derivative
of the Legendre function of the first kind, , with respect to its
degree . In the present work, we extend these studies and construct
several representations of the derivative of the associated Legendre function
of the first kind, , with respect to the degree , for
. At first, we establish several contour-integral
representations of . They are then
used to derive Rodrigues-type formulas for with . Next, some closed-form
expressions for are
obtained. These results are applied to find several representations, both
explicit and of the Rodrigues type, for the associated Legendre function of the
second kind of integer degree and order, ; the explicit
representations are suitable for use for numerical purposes in various regions
of the complex -plane. Finally, the derivatives
, and , all with , are evaluated in terms
of .Comment: LateX, 40 pages, 1 figure, extensive referencin
- …
