1,156 research outputs found
How to Cross-Examine Opposing Experts
Accomplished Georgia Law alumni Kay Deming (J.D.\u2778) and Rick Deane (J.D.\u2777) addressed how one should cross-examine opposing experts
Webs of Lagrangian Tori in Projective Symplectic Manifolds
For a Lagrangian torus A in a simply-connected projective symplectic manifold
M, we prove that M has a hypersurface disjoint from a deformation of A. This
implies that a Lagrangian torus in a compact hyperk\"ahler manifold is a fiber
of an almost holomorphic Lagrangian fibration, giving an affirmative answer to
a question of Beauville's. Our proof employs two different tools: the theory of
action-angle variables for algebraically completely integrable Hamiltonian
systems and Wielandt's theory of subnormal subgroups.Comment: 18 pages, minor latex problem fixe
Industry targeting: a new approach to local economic development
Industrial policy ; Illinois
Make Research Data Public? -- Not Always so Simple: A Dialogue for Statisticians and Science Editors
Putting data into the public domain is not the same thing as making those
data accessible for intelligent analysis. A distinguished group of editors and
experts who were already engaged in one way or another with the issues inherent
in making research data public came together with statisticians to initiate a
dialogue about policies and practicalities of requiring published research to
be accompanied by publication of the research data. This dialogue carried
beyond the broad issues of the advisability, the intellectual integrity, the
scientific exigencies to the relevance of these issues to statistics as a
discipline and the relevance of statistics, from inference to modeling to data
exploration, to science and social science policies on these issues.Comment: Published in at http://dx.doi.org/10.1214/10-STS320 the Statistical
Science (http://www.imstat.org/sts/) by the Institute of Mathematical
Statistics (http://www.imstat.org
Pairing, Charge, and Spin Correlations in the Three-Band Hubbard Model
Using the Constrained Path Monte Carlo (CPMC) method, we simulated the
two-dimensional, three-band Hubbard model to study pairing, charge, and spin
correlations as a function of electron and hole doping and the Coulomb
repulsion between charges on neighboring Cu and O lattice sites. As a
function of distance, both the -wave and extended s-wave pairing
correlations decayed quickly. In the charge-transfer regime, increasing
decreased the long-range part of the correlation functions in both
channels, while in the mixed-valent regime, it increased the long-range part of
the s-wave behavior but decreased that of the d-wave behavior. Still the d-wave
behavior dominated. At a given doping, increasing increased the
spin-spin correlations in the charge-transfer regime but decreased them in the
mixed-valent regime. Also increasing suppressed the charge-charge
correlations between neighboring Cu and O sites. Electron and hole doping away
from half-filling was accompanied by a rapid suppression of anti-ferromagnetic
correlations.Comment: Revtex, 8 pages with 15 figure
A consistent derivation of the quark--antiquark and three quark potentials in a Wilson loop context
In this paper we give a new derivation of the quark-antiquark potential in
the Wilson loop context. This makes more explicit the approximations involved
and enables an immediate extension to the three-quark case. In the
case we find the same semirelativistic potential obtained in
preceding papers but for a question of ordering. In the case we find a
spin dependent potential identical to that already derived in the literature
from the ad hoc and non correct assumption of scalar confinement. Furthermore
we obtain the correct form of the spin independent potential up to the
order.Comment: 30 pages, Revtex (3 figures available as hard copies only), IFUM
452/F
Non-Abelian dynamics and heavy multiquarks, Steiner-tree confinement in hadron spectroscopy
A brief review is first presented of attempts to predict stable multiquark
states within current models of hadron spectroscopy. Then a model combining
flip-flop and connected Steiner trees is introduced and shown to lead to stable
multiquarks, in particular for some configurations involving several heavy
quarks and bearing exotic quantum numbers.Comment: 8 pages, 5 figures, Invited talk at the 21st European Conference on
Few-Body Problems in Physics, Salamanca, Spain, August 29th--September 3rd,
2010, to appear in the Proceedings, ed.~A.~Valcarce et al., to appear in
Few-Body Syste
Non-perturbative Gluons and Pseudoscalar Mesons in Baryon Spectroscopy
We study baryon spectroscopy including the effects of pseudoscalar meson
exchange and one gluon exchange potentials between quarks, governed by
. The non-perturbative, hyperspherical method calculations show that
one can obtain a good description of the data by using a quark-meson coupling
constant that is compatible with the measured pion-nucleon coupling constant,
and a reasonably small value of .Comment: 12 pages; Submitted to Phys. Rev. C. Rapid Communication
Scattering of long wavelengths into thin silicon photovoltaic films by plasmonic silver nanoparticles
Nanoparticles and nanostructures with plasmonic resonances are currently being employed to enhance the efficiency of solar cells. Ag stripe arrays have been shown theoretically to enhance the short-circuit current of thin silicon layers. Monolayers of Ag nanoparticles with diameter d < 300 nm have shown strong plasmonic resonances when coated in thin polymer layers with thicknesses < d. We study experimentally the diffuse vs. specular scattering from monolayer arrays of Ag nanoparticles (spheres and prisms with diameters in the range 50 â 300 nm) coated onto the front side of thin (100 nm < t < 500 nm) silicon films deposited on glass and flexible polymer substrates, the latter originating in a roll-to-roll manufacturing process. Ag nanoparticles are held in place and aggregation is prevented with a polymer overcoat. We observe interesting wavelength shifts between maxima in specular and diffuse scattering that depend on particle size and shape, indicating that the nanoparticles substantially modify the scattering into the thin silicon film.United States. Air Force (United States. Army. Natick Soldier Research Development and Engineering Center Contract FA8721-05-C-0002)Massachusetts Institute of Technology. Institute for Soldier Nanotechnologies (Contract W911NF-07-D0004
The Cascadia Initiative : a sea change In seismological studies of subduction zones
Author Posting. © The Oceanography Society, 2014. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 27, no. 2 (2014): 138-150, doi:10.5670/oceanog.2014.49.Increasing public awareness that the Cascadia subduction zone in the Pacific Northwest is capable of great earthquakes (magnitude 9 and greater) motivates the Cascadia Initiative, an ambitious onshore/offshore seismic and geodetic experiment that takes advantage of an amphibious array to study questions ranging from megathrust earthquakes, to volcanic arc structure, to the formation, deformation and hydration of the Juan De Fuca and Gorda Plates. Here, we provide an overview of the Cascadia Initiative, including its primary science objectives, its experimental design and implementation, and a preview of how the resulting data are being used by a diverse and growing scientific community. The Cascadia Initiative also exemplifies how new technology and community-based experiments are opening up frontiers for marine science. The new technologyâshielded ocean bottom seismometersâis allowing more routine investigation of the source zone of megathrust earthquakes, which almost exclusively lies offshore and in shallow water. The Cascadia Initiative offers opportunities and accompanying challenges to a rapidly expanding community of those who use ocean bottom seismic data.The Cascadia Initiative is supported by
the National Science Foundation; the
CIET is supported under grants OCE-
1139701, OCE-1238023, OCEâ1342503,
OCE-1407821, and OCE-1427663
to the University of Oregon
- âŠ