6 research outputs found

    Enzyme-Degradable Self-Assembled Nanostructures from Polymer-Peptide Hybrids

    No full text
    The peptide PVGLIG, which is known to be selectively cleaved by the tumor-associated enzyme matrix metalloproteinase-2 (MMP-2), was conjugated to a-alkene poly(trimethylene carbonate) (PTMC) blocks of varying sizes via UV-initiated thiol-ene "click" chemistry. The PTMC precursor was synthesized by metal-free ring-opening polymerization using ally! alcohol as an initiator and an N-heterocyclic carbene as an organic catalyst. The unprecedented PVGLIG-b-PTMC hybrids were self-assembled in aqueous solution and various submicrometer-sized morphologies obtained by a nanoprecipitation process. Characterization of particle morphology was carried out by multiangle dynamic light scattering (DLS) and static light scattering (SLS) evidencing spherical nanoparticles with different morphologies and narrow size distributions. Microstructure details were also observed on transmission electron micrographs and were in good agreement with light scattering measurements showing the assembly of core shell, large compound micelles, and vesicle morphologies, the particle morphology varying with the hydrophilic weight fractions (f) of the hybrids. These nanostructures displayed selective degradation in the presence of the cancer-associated enzyme MMP-2, as probed by the morphological change both by TEM and DLS. All these results demonstrated that PVGLIG-b-PTMC hybrids were suitable to target the tumor microenvironment

    Recent trends in the tuning of polymersomes' membrane properties.

    Get PDF
    "Polymersomes" are vesicular structures made from the self-assembly of block copolymers. Such structures present outstanding interest for different applications such as micro- or nano-reactor, drug release or can simply be used as tool for understanding basic biological mechanisms. The use of polymersomes in such applications is strongly related to the way their membrane properties are controlled and tuned either by a precise molecular design of the constituting block or by addition of specific components inside the membrane (formulation approaches). Typical membrane properties of polymersomes obtained from the self-assembly of "coil coil" block copolymer since the end of the nineties will be first briefly reviewed and compared to those of their lipidic analogues, named liposomes. Therefore the different approaches able to modulate their permeability, mechanical properties or ability to release loaded drugs, using macromolecular engineering or formulations, are detailed. To conclude, the most recent advances to modulate the polymersomes' properties and systems that appear very promising especially for biomedical application or for the development of complex and bio-mimetic structures are presented

    Synthesis and Application of Protein-Containing Block Copolymers

    No full text

    Smart systems related to polypeptide sequences

    No full text
    corecore