27 research outputs found

    OSAS: valutazione della patologia e patente professionale

    Get PDF
    La sindrome delle apnee ostruttive del sonno è una patologia che colpisce indistintamente maschi e femmine. La OSAS (Obstructive Sleep Apnea Syndrome) è determinata da episodi ripetuti di ostruzione parziale o completa delle vie aeree superiori.I disturbi del sonno non solo si ripercuotono negativamente sulla salute e sulla qualità della vita di chi ne soffre, ma aumentano anche i rischi sulle strade. Il 19 febbraio 2016 è stato pubblicato sulla Gazzetta Ufficiale n. 41 il decreto dirigenziale 3 febbraio 2016 del Ministero della Salute, che fornisce gli indirizzi medico-legali da osservare per l’accertamento dell’idoneità psico-fisica alla guida per coloro che sono affetti, o che si sospetta possano essere affetti, da OSAS. The syndrome of obstructive sleep apneee is a condition that affects males and females without distinction. OSAS (Obstructive sleep apnea syndrome) is advanced by Repeated episodes of partial or complete obstruction of the upper airway.Sleep disorders not only have a negative effect on the health and quality of life of those who suffer, but also increase the risks on the roads.On February 19, 2016 it was published in the Official Gazette no. 41 of the Ministry of Health Decree of 3 February 2016, which contains the medical-legal guidelines to be observed for the assessment of the psycho-physical fitness to guide those who are affected, or who are suspected of being affected, by OSA

    Evaluation of Two-Month Antibody Levels after Heterologous ChAdOx1-S/BNT162b2 Vaccination Compared to Homologous ChAdOx1-S or BNT162b2 Vaccination

    Get PDF
    none11noWe evaluated the post-vaccination humoral response of three real-world cohorts. Vaccinated subjects primed with ChAdOx1-S and boosted with BNT162b2 mRNA vaccine were compared to homologous dosing (BNT162b2/BNT162b2 and ChAdOx1-S/ChAdOx1-S). Serum samples were collected two months after vaccination from a total of 1248 subjects. The results showed that the heterologous vaccine schedule induced a significantly higher humoral response followed by homologous BNT162b2/BNT162b2 and ChAdOx1-S/ChAdOx1-S vaccines (p < 0.0001). Moreover, analyzing factors (i.e., vaccine schedule, sex, age, BMI, smoking, diabetes, cardiovascular diseases, respiratory tract diseases, COVID-19 diagnosis, vaccine side effects) influencing the IgG anti-S response, we found that only the type of vaccine affected the antibody titer (p < 0.0001). Only mild vaccine reactions resolved within few days (40% of subjects) and no severe side effects for either homologous groups or the heterologous group were reported. Our data support the use of heterologous vaccination as an effective and safe alternative to increase humoral immunity against COVID-19.openBarocci, Simone; Orlandi, Chiara; Diotallevi, Aurora; Buffi, Gloria; Ceccarelli, Marcello; Vandini, Daniela; Carlotti, Eugenio; Galluzzi, Luca; Rocchi, Marco Bruno Luigi; Magnani, Mauro; Casabianca, AnnaBarocci, Simone; Orlandi, Chiara; Diotallevi, Aurora; Buffi, Gloria; Ceccarelli, Marcello; Vandini, Daniela; Carlotti, Eugenio; Galluzzi, Luca; Rocchi, Marco Bruno Luigi; Magnani, Mauro; Casabianca, Ann

    Rapid monitoring of SARS-CoV-2 variants of concern through high-resolution melt analysis

    Get PDF
    The current global pandemic of COVID-19 is characterized by waves of infection due to the emergence of new SARS-CoV-2 variants carrying mutations on the Spike (S) protein gene. Since autumn 2020 many Variants of Concern (VOC) have been reported: Alpha/B.1.1.7, Beta/B.1.351, Gamma/P.1, Delta/B.1.617.2, Omicron/B.1.1.529, and sublineages. Surveillance of genomic variants is currently based on whole-genome sequencing (WGS) of viral genomes on a random fraction of samples positive to molecular tests. WGS involves high costs, extended analysis time, specialized staff, and expensive instruments compared to a PCR-based test. To rapidly identify the VOCs in positive samples, six assays based on real-time PCR and high-resolution melting (HRM) were designed on the S gene and applied to 120 oro/nasopharyngeal swab samples collected from October 2020 to June 2022 (106 positive and 14 negative samples). Overall, the assays showed 100% specificity and sensitivity compared with commercial PCR tests for COVID-19. Moreover, 104 samples out of 106 (98.1%) were correctly identified as follows: 8 Wuhan (wild type), 12 Alpha, 23 Delta, 46 Omicron BA.1/BA.1.1, 15 Omicron BA.2/BA.4/BA.5. With our lab equipment, about 10 samples can be processed every 3 h at the cost of less than € 10 ($ 10.60) per sample, including RNA extraction. The implementation of this approach could help local epidemiological surveillance and clinical decision-making

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment

    Integrated Genomic Analysis of the Ubiquitin Pathway across Cancer Types

    Get PDF
    Protein ubiquitination is a dynamic and reversibleprocess of adding single ubiquitin molecules orvarious ubiquitin chains to target proteins. Here,using multidimensional omic data of 9,125 tumorsamples across 33 cancer types from The CancerGenome Atlas, we perform comprehensive molecu-lar characterization of 929 ubiquitin-related genesand 95 deubiquitinase genes. Among them, we sys-tematically identify top somatic driver candidates,including mutatedFBXW7with cancer-type-specificpatterns and amplifiedMDM2showing a mutuallyexclusive pattern withBRAFmutations. Ubiquitinpathway genes tend to be upregulated in cancermediated by diverse mechanisms. By integratingpan-cancer multiomic data, we identify a group oftumor samples that exhibit worse prognosis. Thesesamples are consistently associated with the upre-gulation of cell-cycle and DNA repair pathways, char-acterized by mutatedTP53,MYC/TERTamplifica-tion, andAPC/PTENdeletion. Our analysishighlights the importance of the ubiquitin pathwayin cancer development and lays a foundation fordeveloping relevant therapeutic strategies

    The Cancer Genome Atlas Comprehensive Molecular Characterization of Renal Cell Carcinoma

    Get PDF

    Machine Learning Identifies Stemness Features Associated with Oncogenic Dedifferentiation.

    Get PDF
    Cancer progression involves the gradual loss of a differentiated phenotype and acquisition of progenitor and stem-cell-like features. Here, we provide novel stemness indices for assessing the degree of oncogenic dedifferentiation. We used an innovative one-class logistic regression (OCLR) machine-learning algorithm to extract transcriptomic and epigenetic feature sets derived from non-transformed pluripotent stem cells and their differentiated progeny. Using OCLR, we were able to identify previously undiscovered biological mechanisms associated with the dedifferentiated oncogenic state. Analyses of the tumor microenvironment revealed unanticipated correlation of cancer stemness with immune checkpoint expression and infiltrating immune cells. We found that the dedifferentiated oncogenic phenotype was generally most prominent in metastatic tumors. Application of our stemness indices to single-cell data revealed patterns of intra-tumor molecular heterogeneity. Finally, the indices allowed for the identification of novel targets and possible targeted therapies aimed at tumor differentiation
    corecore