51 research outputs found
Forensic population data for 20 STR loci in Argentina
In order to provide useful information of forensic interest for the new markers included in the PowerPlex1 21 System (Promega Corp, USA), namely D1S1656, D6S1043 and D12S391, a population study was conducted in a sample of 907 unrelated healthy individuals from Argentina. Samples were randomly chosen from routine paternity testing. Blood samples or buccal swabs were collected after informed consent, taken from individuals of different urban populations from 7 provinces of Argentina: 464 individuals from a Region 1, including the provinces of Catamarca (N = 27), Córdoba (N = 67), Entre Ríos (N = 24) and Buenos Aires (N = 346), and 443 individuals form a Region 2 including the provinces of Neuquén (N = 134), Chubut (N = 223) and Santa Cruz (N = 86).Fil: Borosky, Alicia. Laboratorio de Inmunogenética y Diagnóstico Molecular; ArgentinaFil: Toscanini, Ulises. Fundación Favaloro. Primer Centro Argentino de Inmunogenética; ArgentinaFil: Gómez, Andrea. Fundación Favaloro. Primer Centro Argentino de Inmunogenética; ArgentinaFil: Parolin, María Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Nacional Patagónico; ArgentinaFil: Basso, Nestor Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Nacional Patagónico; ArgentinaFil: Vullo, Carlos. Laboratorio de Inmunogenética y Diagnóstico Molecular; Argentin
The complete mitogenome of a 500-year-old Inca child mummy
In 1985, a frozen mummy was found in Cerro Aconcagua (Argentina). Archaeological studies identified the mummy as a seven-year-old Inca sacrifice victim who lived >500 years ago, at the time of the expansion of the Inca Empire towards the southern cone. The sequence of its entire mitogenome was obtained. After querying a large worldwide database of mitogenomes (>28,000) we found that the Inca haplotype belonged to a branch of haplogroup C1b (C1bi) that has not yet been identified in modern Native Americans. The expansion of C1b into the Americas, as estimated using 203 C1b mitogenomes, dates to the initial Paleoindian settlements (~18.3 thousand years ago [kya]); however, its internal variation differs between Mesoamerica and South America. By querying large databases of control region haplotypes (>150,000), we found only a few C1bi members in Peru and Bolivia (e.g. Aymaras), including one haplotype retrieved from ancient DNA of an individual belonging to the Wari Empire (Peruvian Andes). Overall, the results suggest that the profile of the mummy represents a very rare sub-clade that arose 14.3 (5–23.6) kya and could have been more frequent in the past. A Peruvian Inca origin for present-day C1bi haplotypes would satisfy both the genetic and paleo-anthropological findings.The research leading to these results has received funding from the “Ministerio de Ciencia e Innovación”
(SAF2011–26983), the Plan Galego IDT (EM 2012/045) and a grant from the Sistema Universitario
Gallego- Modalidad REDES (2012-PG226) from the Xunta de Galicia (A.S.); Instituto Carlos III
(Intensificación de la actividad investigadora) and Fondo de Investigación Sanitaria (FIS; PI10/00540
and PI13/02382) of the Plan Nacional de I+ D+ I and Fondos FEDER (F.M.T)S
Cuadro 33 : evidencias y encuentros en la búsqueda de compañeros desaparecidos de Mendoza
El Cuadro 33 es un sector del Cementerio de la Ciudad de Mendoza que, según registros y testimonios, siempre estuvo destinado a enterrar a los denominados NN. Desde 2010 hasta la fecha, el Equipo Argentino de Antropología Forense ha realizado seis excavaciones en busca de restos de compañeros desaparecidos durante la última dictadura cívico-militar. La búsqueda fue posible gracias a la investigación que realizaron durante años miembros de la Comisión Familiares de Detenidos Desaparecidos por Razones Políticas de Mendoza, y que fue presentada ante el Juzgado ofreciendo la evidencia necesaria para ordenar las excavaciones
Taxonomic identification with cytochrome b applied to a Patagonian archaeological case
En este trabajo presentamos los primeros resultados de la identificación taxonómica mediante el análisis del citocromo b de muestras óseas subactuales y arqueológicas (Holoceno tardío) procedentes de Patagonia. El bajo grado de determinación taxonómica de los restos óseos recuperados en el sitio Acevedo (localidad de Río Pico, provincia del Chubut, Argentina), alcanzada mediante el análisis zooarqueológico tradicional, y la necesidad del Laboratorio de Genética Forense del Equipo Argentino de Antropología Forense de identificar especies animales en contextos forenses, nos llevó a aunar esfuerzos y realizar un trabajo conjunto en torno al análisis del citocromo b en restos óseos no humanos. La identificación taxonómica de muestras subactuales lograda con este análisis confirma la efectividad de los protocolos seguidos en dicho laboratorio. Su aplicación a contextos arqueológicos, como lo prueban los resultados alcanzados en este trabajo, dependerá de la degradaciónde los materiales analizados. En el caso del sitio Acevedo, este análisis además permitió aportar la primera identificación arqueológica de huemul en el Centro Oeste cordillerano del Chubut, aplicando una combinación del análisis del citocromo b con la morfología ósea comparativa. A pesar de los resultados positivos, el carácter destructivo del análisis y sus altos costos hacen que su aplicación deba ser evaluada adecuadamente en función de la problemática arqueológica bajo estudio.First results for taxonomic identification by cytochrome b on Patagonian subactual and archaeological (Late Holocene) bone samples are presented. The low identifiability level achieved at Acevedo archaeological site (Río Pico, Chubut, Argentina), by traditional zooarchaeological analysis, and the need of the EAAF Laboratory of Forensic Genetics to identify vertebrate species in forensic contexts, took us to work jointly on the analysis of cytochrome b in non-human bones. Subactual sample taxonomic identification obtained with this analysis confirms the effectiveness of the protocols followed in the laboratory. Its application to archaeological contexts, as evidenced by the results obtained in this work, will depend on the degradation of the materials. In the case of Acevedo, analysis provided the first archaeological identification of huemul in Central Andean Chubut, obtained by a combination of cytochrome b analysis with comparative bone morphology. Despite the positive results, the destructive nature of the analysis and high costs make their application should be adequately evaluated according to the archaeological problem under study.Fil: Scheinsohn, Vivian Gabriela. Secretaría de Cultura de la Nación. Dirección Nacional de Cultura y Museos. Instituto Nacional de Antropología y Pensamiento Latinoamericano; ArgentinaFil: Fernández, Pablo Marcelo. Secretaría de Cultura de la Nación. Dirección Nacional de Cultura y Museos. Instituto Nacional de Antropología y Pensamiento Latinoamericano; ArgentinaFil: Garrone, Florencia. Equipo Argentino de Antropología Forense; ArgentinaFil: Catelli, Laura. Equipo Argentino de Antropología Forense; ArgentinaFil: Longaray, Micaela. Equipo Argentino de Antropología Forense; ArgentinaFil: Romero, Magdalena. Equipo Argentino de Antropología Forense; ArgentinaFil: Salado, Mercedes. Equipo Argentino de Antropología Forense; ArgentinaFil: Fernández, Mercedes Grisel. Secretaría de Cultura de la Nación. Dirección Nacional de Cultura y Museos. Instituto Nacional de Antropología y Pensamiento Latinoamericano; ArgentinaFil: Tchilinguirian, Pablo. Secretaría de Cultura de la Nación. Dirección Nacional de Cultura y Museos. Instituto Nacional de Antropología y Pensamiento Latinoamericano; ArgentinaFil: Vullo, Carlos. Equipo Argentino de Antropología Forense; Argentin
The impact of modern migrations on present-day multi-ethnic Argentina as recorded on the mitochondrial DNA genome
<p>Abstract</p> <p>Background</p> <p>The genetic background of Argentineans is a mosaic of different continental ancestries. From colonial to present times, the genetic contribution of Europeans and sub-Saharan Africans has superposed to or replaced the indigenous genetic 'stratum'. A sample of 384 individuals representing different Argentinean provinces was collected and genotyped for the first and the second mitochondrial DNA (mtDNA) hypervariable regions, and selectively genotyped for mtDNA SNPs. This data was analyzed together with additional 440 profiles from rural and urban populations plus 304 from Native American Argentineans, all available from the literature. A worldwide database was used for phylogeographic inferences, inter-population comparisons, and admixture analysis. Samples identified as belonging to hg (hg) H2a5 were sequenced for the entire mtDNA genome.</p> <p>Results</p> <p>Phylogenetic and admixture analyses indicate that only half of the Native American component in urban Argentineans might be attributed to the legacy of extinct ancestral Argentineans and that the Spanish genetic contribution is slightly higher than the Italian one. Entire H2a5 genomes linked these Argentinean mtDNAs to the Basque Country and improved the phylogeny of this Basque autochthonous clade. The fingerprint of African slaves in urban Argentinean mtDNAs was low and it can be phylogeographically attributed predominantly to western African. The European component is significantly more prevalent in the Buenos Aires province, the main gate of entrance for Atlantic immigration to Argentina, while the Native American component is larger in North and South Argentina. AMOVA, Principal Component Analysis and hgs/haplotype patterns in Argentina revealed an important level of genetic sub-structure in the country.</p> <p>Conclusions</p> <p>Studies aimed to compare mtDNA frequency profiles from different Argentinean geographical regions (e.g., forensic and case-control studies) should take into account the important genetic heterogeneity of the country in order to prevent false positive claims of association in disease studies or inadequate evaluation of forensic evidence.</p
Phylogeographic and genome-wide investigations of Vietnam ethnic groups reveal signatures of complex historical demographic movements
The territory of present-day Vietnam was the cradle of one of the world’s earliest civilizations, and one of the first world regions to develop agriculture. We analyzed the mitochondrial DNA (mtDNA) complete control region of six ethnic groups and the mitogenomes from Vietnamese in The 1000 Genomes Project (1000G). Genome-wide data from 1000G (~55k SNPs) were also investigated to explore different demographic scenarios. All Vietnamese carry South East Asian (SEA) haplotypes, which show a moderate geographic and ethnic stratification, with the Mong constituting the most distinctive group. Two new mtDNA clades (M7b1a1f1 and F1f1) point to historical gene flow between the Vietnamese and other neighboring countries. Bayesian-based inferences indicate a time-deep and continuous population growth of Vietnamese, although with some exceptions. The dramatic population decrease experienced by the Cham 700 years ago (ya) fits well with the Nam tiến (“southern expansion”) southwards from their original heartland in the Red River Delta. Autosomal SNPs consistently point to important historical gene flow within mainland SEA, and add support to a main admixture event occurring between Chinese and a southern Asian ancestral composite (mainly represented by the Malay). This admixture event occurred ~800 ya, again coinciding with the Nam tiến.This study received support from the Instituto de Salud Carlos III (Proyecto de Investigación en Salud, Acción Estratégica en Salud: project GePEM ISCIII/PI16/01478/Cofinanciado FEDER) (AS) and project ReSVinext ISCIII/PI16/01569/Cofinanciado FEDER (FMT); Consellería de Sanidade, Xunta de Galicia (RHI07/2-intensificación actividad investigadora, PS09749 and 10PXIB918184PR), Instituto de Salud Carlos III (Intensificación de la actividad investigadora 2007–2012, PI16/01569), Fondo de Investigación Sanitaria (FIS; PI070069/PI1000540) del plan nacional de I+D+I and “fondos FEDER” (FMT), and 2016-PG071 Consolidación e Estructuración REDES 2016GI-1344 G3VIP (Grupo Gallego de Genética Vacunas Infecciones y Pediatría, ED341D R2016/021) (AS and FMT)S
A GEP-ISFG collaborative study on the optimization of an X-STR decaplex: data on 15 Iberian and Latin American populations
Abstract In a collaborative work carried out by the Spanish and Portuguese ISFG Working Group (GEPISFG), a polymerase chain reaction multiplex was optimized in order to type ten X-chromosome short tandem repeats (STRs) in a single reaction, including: DXS8378, DXS9902, DXS7132, DXS9898, DXS6809, DXS6789 DXS7133, GATA172D05, GATA31E08, and DXS7423. Using this X-decaplex, each 17 of the participating laboratories typed a population sample of approximately 200 unrelated individuals (100 males and 100 females). In this work, we report the allele frequencies for the ten XSTRs in 15 samples from Argentina (Buenos Aires, Córdoba, Río Negro, Entre Ríos, and Misiones), Brazil (São Paulo, Rio de Janeiro, Paraná, and Mato Grosso do Sul), Colombia (Antioquia), Costa Rica, Portugal (Northern and Central regions), and Spain (Galicia and Cantabria). Gene diversities were calculated for the ten markers in each population and all values were above 56%. The average diversity per locus varied between 66%, for DXS7133, and 82%, for DXS6809. For this set of STRs, a high discrimination power was obtained in all populations, both in males (≥1 in 5×105) and females (≥1 in 3×109), as well as high mean exclusion chance in father/daughter duos (≥99.953%) and in father/mother/daughter trios (≥99.999%). Genetic distance analysis showed no significant differences between northern and central Portugal or between the two Spanish samples from Galicia and Cantabria. Inside Brazil, significant differences were found between Rio de Janeiro and the other three populations, as well as between São Paulo and Paraná. For the five Argentinean samples, significant distances were only observed when comparing Misiones with Entre Ríos and with Río Negro, the only two samples that do not differ significantly from Costa Rica. Antioquia differed from all other samples, except the one from Río Negro.Fil: Gusmão, Leonor. Universidad de Porto; PortugalFil: Sánchez Diz, Paula. Universidad de Santiago de Compostela; EspañaFil: Alves, Cíntia. Universidad de Porto; PortugalFil: Gomes, Iva. Universidad de Porto; PortugalFil: Zarrabeitia, María Teresa. Universidad de Cantabria; EspañaFil: Abovich, Mariel. Ministerio de Ciencia, Tecnología e Innovación Productiva. Banco Nacional de Datos Genéticos; ArgentinaFil: Atmetlla, Ivannia. Laboratorio de Análisis Clínicos y Moleculares; Costa RicaFil: Bobillo, Maria Cecilia. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Servicio de Huellas Digitales Genéticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; ArgentinaFil: Bravo, Luisa. Laboratorio Genes; ColombiaFil: Builes, Juan. Laboratorio Genes; ColombiaFil: Cainé, Laura. Instituto Nacional de Medicina Legal; PortugalFil: Calvo, Raquel. Universidad de Santiago de Compostela; EspañaFil: Carvalho, Elizeu. Universidade do Estado do Rio de Janeiro; BrasilFil: Carvalho, Mónica. Instituto Nacional de Medicina Legal; PortugalFil: Cicarelli, Regina. Universidade Estadual Paulista; BrasilFil: Catelli, Laura. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Corach, Daniel. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Servicio de Huellas Digitales Genéticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; ArgentinaFil: Espinoza, Marta. Unidad de Genética Forense; Costa RicaFil: García Monasterio, Óscar. Area de Laboratorio Ertzaintza; EspañaFil: Malaghini, Marcelo. Laboratorio Frischmann Aisengart ; BrasilFil: Martins, Joyce. Universidade Estadual Paulista; BrasilFil: Pinheiro, Fátima. Instituto Nacional de Medicina Legal; PortugalFil: Porto, Maria João. Instituto Nacional de Medicina Legal; PortugalFil: Raimondi, Eduardo Humberto. Fundación Favaloro; ArgentinaFil: Riancho, Jose Antonio. Universidad de Cantabria; EspañaFil: Rodríguez, Amelia. Universidad de Santiago de Compostela; EspañaFil: Rodríguez, Anayanci. Universidad de Santiago de Compostela; EspañaFil: Rodríguez Cardozo, Belén. Ministerio de Ciencia, Tecnología e Innovación Productiva. Banco Nacional de Datos Genéticos; ArgentinaFil: Schneider, Vicente. Laboratorio Frischmann Aisengart; BrasilFil: Silva, Sandra. Laboratorio de Análisis Clínicos y Moleculares; Costa RicaFil: Tavares, Celso. Universidade do Estado do Rio de Janeiro; BrasilFil: Toscanini, Ulises Faustino. Fundación Favaloro; ArgentinaFil: Vullo, Carlos. No especifíca;Fil: Whittle, Martin. Genomic Engenharia Molecular; BrasilFil: Yurrebaso, Iñaki. Laboratorio Ertzaintza; EspañaFil: Carracedo, Ángel. Universidad de Santiago de Compostela; EspañaFil: Amorim, António. Universidad de Porto; Portuga
Second GHEP-ISFG exercise for DVI: “DNA-led” victims’ identification in a simulated air crash
The Spanish and Portuguese-Speaking Working Group of the International Society for Forensic Genetics (GHEP-ISFG) has organized a second collaborative exercise on a simulated case of Disaster Victim Identification (DVI), with the participation of eighteen laboratories. The exercise focused on the analysis of a simulated plane crash case of medium-size resulting in 66 victims with varying degrees of fragmentation of the bodies (with commingled remains). As an additional difficulty, this second exercise included 21 related victims belonging to 6 families among the 66 missings to be identified. A total number of 228 post-mortem samples were represented with aSTR and mtDNA profiles, with a proportion of partial aSTR profiles simulating charred remains. To perform the exercise, participants were provided with aSTR and mtDNA data of 51 reference pedigrees —some of which deficient—including 128 donors for identification purposes. The exercise consisted firstly in the comparison of the post-mortem genetic profiles in order to re-associate fragmented remains to the same individual and secondly in the identification of the re-associated remains by comparing aSTR and mtDNA profiles with reference pedigrees using pre-established thresholds to report a positive identification. Regarding the results of the post-mortem samples re-associations, only a small number of discrepancies among participants were detected, all of which were from just a few labs. However, in the identification process by kinship analysis with family references, there were more discrepancies in comparison to the correct results. The identification results of single victims yielded fewer problems than the identification of multiple related victims within the same family groups. Several reasons for the discrepant results were detected: a) the identity/non-identity hypotheses were sometimes wrongly expressed in the likelihood ratio calculations, b) some laboratories failed to use all family references to report the DNA match, c) In families with several related victims, some laboratories firstly identified some victims and then unnecessarily used their genetic information to identify the remaining victims within the family, d) some laboratories did not correctly use “prior odds” values for the Bayesian treatment of the episode for both post-mortem/post-mortem re-associations as well as the ante-mortem/post-mortem comparisons to evaluate the probability of identity. For some of the above reasons, certain laboratories failed to identify some victims. This simulated “DNA-led” identification exercise may help forensic genetic laboratories to gain experience and expertize for DVI or MPI in using genetic data and comparing their own results with the ones in this collaborative exercise.This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.Peer reviewe
Second GHEP-ISFG exercise for DVI: "DNA-led" victims' identification in a simulated air crash
The Spanish and Portuguese-Speaking Working Group of the International Society for Forensic Genetics (GHEP-ISFG) has organized a second collaborative exercise on a simulated case of Disaster Victim Identification (DVI), with the participation of eighteen laboratories. The exercise focused on the analysis of a simulated plane crash case of medium-size resulting in 66 victims with varying degrees of fragmentation of the bodies (with commingled remains). As an additional difficulty, this second exercise included 21 related victims belonging to 6 families among the 66 missings to be identified. A total number of 228 post-mortem samples were represented with aSTR and mtDNA profiles, with a proportion of partial aSTR profiles simulating charred remains. To perform the exercise, participants were provided with aSTR and mtDNA data of 51 reference pedigrees -some of which deficient-including 128 donors for identification purposes. The exercise consisted firstly in the comparison of the post-mortem genetic profiles in order to re-associate fragmented remains to the same individual and secondly in the identification of the re-associated remains by comparing aSTR and mtDNA profiles with reference pedigrees using pre-established thresholds to report a positive identification. Regarding the results of the post-mortem samples re-associations, only a small number of discrepancies among participants were detected, all of which were from just a few labs. However, in the identification process by kinship analysis with family references, there were more discrepancies in comparison to the correct results. The identification results of single victims yielded fewer problems than the identification of multiple related victims within the same family groups. Several reasons for the discrepant results were detected: a) the identity/non-identity hypotheses were sometimes wrongly expressed in the likelihood ratio calculations, b) some laboratories failed to use all family references to report the DNA match, c) In families with several related victims, some laboratories firstly identified some victims and then unnecessarily used their genetic information to identify the remaining victims within the family, d) some laboratories did not correctly use "prior odds" values for the Bayesian treatment of the episode for both post-mortem/post-mortem re-associations as well as the ante-mortem/post-mortem comparisons to evaluate the probability of identity. For some of the above reasons, certain laboratories failed to identify some victims. This simulated "DNA-led" identification exercise may help forensic genetic laboratories to gain experience and expertize for DVI or MPI in using genetic data and comparing their own results with the ones in this collaborative exercise.Depto. de Medicina Legal, Psiquiatría y PatologíaFac. de MedicinaTRUEpu
- …