10 research outputs found
Pharmacokinetics, Metabolism, Biodistribution, Radiation Dosimetry, and Toxicology of F-18-Fluoroacetate (F-18-FACE) in Non-human Primates
Introduction: To facilitate the clinical translation of 18F-fluoroacetate ( 18F-FACE), the pharmacokinetics, biodistribution, radiolabeled metabolites, radiation dosimetry, and pharmacological safety of diagnostic doses of 18F-FACE were determined in non-human primates. Methods: 18F-FACE was synthesized using a custom-built automated synthesis module. Six rhesus monkeys (three of each sex) were injected intravenously with 18F-FACE (165.4±28.5 MBq), followed by dynamic positron emission tomography (PET) imaging of the thoracoabdominal area during 0-30 min post-injection and static whole-body PET imaging at 40, 100, and 170 min. Serial blood samples and a urine sample were obtained from each animal to determine the time course of 18F-FACE and its radiolabeled metabolites. Electrocardiograms and hematology analyses were obtained to evaluate the acute and delayed toxicity of diagnostic dosages of 18F-FACE. The time-integrated activity coefficients for individual source organs and the whole body after administration of 18F-FACE were obtained using quantitative analyses of dynamic and static PET images and were extrapolated to humans. Results: The blood clearance of 18F-FACE exhibited bi-exponential kinetics with half-times of 4 and 250 min for the fast and slow phases, respectively. A rapid accumulation of 18F-FACE-derived radioactivity was observed in the liver and kidneys, followed by clearance of the radioactivity into the intestine and the urinary bladder. Radio-HPLC analyses of blood and urine samples demonstrated that 18F-fluoride was the only detectable radiolabeled metabolite at the level of less than 9 of total radioactivity in blood at 180 min after the 18F-FACE injection. The uptake of free 18F-fluoride in the bones was insignificant during the course of the imaging studies. No significant changes in ECG, CBC, liver enzymes, or renal function were observed. The estimated effective dose for an adult human is 3.90-7.81 mSv from the administration of 185-370 MBq of 18F-FACE. Conclusions: The effective dose and individual organ radiation absorbed doses from administration of a diagnostic dosage of 18F-FACE are acceptable. From a pharmacologic perspective, diagnostic dosages of 18F-FACE are non-toxic in primates and, therefore, could be safely administered to human patients for PET imaging. © Academy of Molecular Imaging and Society for Molecular Imaging, 2011
Molecular imaging of active mutant L858R EGF receptor (EGFR) kinase-expressing nonsmall cell lung carcinomas using PET/CT
The importance of the EGF receptor (EGFR) signaling pathway in the development and progression of nonsmall cell lung carcinomas (NSCLC) is widely recognized. Gene sequencing studies revealed that a majority of tumors responding to EGFR kinase inhibitors harbor activating mutations in the EGFR kinase domain. This underscores the need for novel biomarkers and diagnostic imaging approaches to identify patients who may benefit from particular therapeutic agents and approaches with improved efficacy and safety profiles. To this goal, we developed 4-[(3-iodophenyl)amino]-7-{2-[2-{2-(2-[2-{2-([18F]fluoroethoxy)-ethoxy}-ethoxy]-ethoxy)-ethoxy}-ethoxy]-quinazoline-6-yl-acrylamide ([18F]F-PEG6-IPQA), a radiotracer with increased selectivity and irreversible binding to the active mutant L858R EGFR kinase. We show that PET with [18F]F-PEG6-IPQA in tumor-bearing mice discriminates H3255 NSCLC xenografts expressing L858R mutant EGFR from H441 and PC14 xenografts expressing EGFR or H1975 xenografts with L858R/T790M dual mutation in EGFR kinase domain, which confers resistance to EGFR inhibitors (i.e., gefitinib). The T790M mutation precludes the [18F]F-PEG6-IPQA from irreversible binding to EGFR. These results suggest that PET with [18F]F-PEG6-IPQA could be used for the selection of NSCLC patients for individualized therapy with small molecular inhibitors of EGFR kinase that are currently used in the clinic and have a similar structure (i.e., iressa, gefitinib, and erlotinib)
Automated, Resin-Based Method to Enhance the Specific Activity of Fluorine-18 Clicked PET Radiotracers
Radiolabeling
of substrates with 2-[<sup>18</sup>F]Âfluoroethylazide
exploits the rapid kinetics, chemical selectivity, and mild conditions
of the copper-catalyzed azide–alkyne cycloaddition reaction.
While this methodology has proven to result in near-quantitative labeling
of alkyne-tagged precursors, the relatively small size of the fluoroethylazide
group makes separation of the <sup>18</sup>F-labeled radiotracer and
the unreacted precursor challenging, particularly with precursors
>500 Da (e.g., peptides). We have developed an inexpensive azide-functionalized
resin to rapidly remove unreacted alkyne precursor following the fluoroethylazide
labeling reaction and integrated it into a fully automated radiosynthesis
platform. We have carried out 2-[<sup>18</sup>F]Âfluoroethylazide labeling
of four different alkynes ranging from <300 Da to >1700 Da and
found that >98% of the unreacted alkyne was removed in less than
20
min at room temperature to afford the final radiotracers at >99%
radiochemical
purity with specific activities up to >200 GBq/μmol. We have
applied this technique to label a novel cyclic peptide previously
evolved to bind the Her2 receptor with high affinity, and demonstrated
tumor-specific uptake and low nonspecific background by PET/CT. This
resin-based methodology is automated, rapid, mild, and general allowing
peptide-based fluorine-18 radiotracers to be obtained with clinically
relevant specific activities without chromatographic separation and
with only a minimal increase in total synthesis time
Rivaroxaban or aspirin for patent foramen ovale and embolic stroke of undetermined source: a prespecified subgroup analysis from the NAVIGATE ESUS trial
Background: Patent foramen ovale (PFO) is a contributor to embolic stroke of undetermined source (ESUS). Subgroup analyses from previous studies suggest that anticoagulation could reduce recurrent stroke compared with antiplatelet therapy. We hypothesised that anticoagulant treatment with rivaroxaban, an oral factor Xa inhibitor, would reduce the risk of recurrent ischaemic stroke compared with aspirin among patients with PFO enrolled in the NAVIGATE ESUS trial. Methods: NAVIGATE ESUS was a double-blinded, randomised, phase 3 trial done at 459 centres in 31 countries that assessed the efficacy and safety of rivaroxaban versus aspirin for secondary stroke prevention in patients with ESUS. For this prespecified subgroup analysis, cohorts with and without PFO were defined on the basis of transthoracic echocardiography (TTE) and transoesophageal echocardiography (TOE). The primary efficacy outcome was time to recurrent ischaemic stroke between treatment groups. The primary safety outcome was major bleeding, according to the criteria of the International Society of Thrombosis and Haemostasis. The primary analyses were based on the intention-to-treat population. Additionally, we did a systematic review and random-effects meta-analysis of studies in which patients with cryptogenic stroke and PFO were randomly assigned to receive anticoagulant or antiplatelet therapy. Findings: Between Dec 23, 2014, and Sept 20, 2017, 7213 participants were enrolled and assigned to receive rivaroxaban (n=3609) or aspirin (n=3604). Patients were followed up for a mean of 11 months because of early trial termination. PFO was reported as present in 534 (7·4%) patients on the basis of either TTE or TOE. Patients with PFO assigned to receive aspirin had a recurrent ischaemic stroke rate of 4·8 events per 100 person-years compared with 2·6 events per 100 person-years in those treated with rivaroxaban. Among patients with known PFO, there was insufficient evidence to support a difference in risk of recurrent ischaemic stroke between rivaroxaban and aspirin (hazard ratio [HR] 0·54; 95% CI 0·22–1·36), and the risk was similar for those without known PFO (1·06; 0·84–1·33; pinteraction=0·18). The risks of major bleeding with rivaroxaban versus aspirin were similar in patients with PFO detected (HR 2·05; 95% CI 0·51–8·18) and in those without PFO detected (HR 2·82; 95% CI 1·69–4·70; pinteraction=0·68). The random-effects meta-analysis combined data from NAVIGATE ESUS with data from two previous trials (PICSS and CLOSE) and yielded a summary odds ratio of 0·48 (95% CI 0·24–0·96; p=0·04) for ischaemic stroke in favour of anticoagulation, without evidence of heterogeneity. Interpretation: Among patients with ESUS who have PFO, anticoagulation might reduce the risk of recurrent stroke by about half, although substantial imprecision remains. Dedicated trials of anticoagulation versus antiplatelet therapy or PFO closure, or both, are warranted. Funding: Bayer and Janssen