36 research outputs found

    Aggregation pathways of human γ D crystallin induced by metal ions revealed by time dependent methods

    Get PDF
    Cataract formation is a slow accumulative process due to protein aggregates promoted by different factors over time. Zinc and copper ions have been reported to induce the formation of aggregates opaque to light in the human gamma D crystallin (HγD) in a concentration and temperature dependent manner. In order to gain insight into the mechanism of metal-induced aggregation of HγD under conditions that mimic more closely the slow, accumulative process of the disease, we have studied the non-equilibrium process with the minimal metal dose that triggers HγD aggregation. Using a wide variety of biophysics techniques such as turbidimetry, dynamic light scattering, fluorescence, nuclear magnetic resonance and computational methods, we obtained information on the molecular mechanisms for the formation of aggregates. Zn(II) ions bind to different regions at the protein, probably with similar affinities. This binding induces a small conformational rearrangement within and between domains and aggregates via the formation of metal bridges without any detectable unfolded intermediates. In contrast, Cu(II)-induced aggregation includes a lag time, in which the N-terminal domain partially unfolds while the C-terminal domain and parts of the N-terminal domain remain in a native-like conformation. This partially unfolded intermediate is prone to form the high-molecular weight aggregates. Our results clearly show that different external factors can promote protein aggregation following different pathways

    Rehabilitation versus surgical reconstruction for non-acute anterior cruciate ligament injury (ACL SNNAP): a pragmatic randomised controlled trial

    Get PDF
    BackgroundAnterior cruciate ligament (ACL) rupture is a common debilitating injury that can cause instability of the knee. We aimed to investigate the best management strategy between reconstructive surgery and non-surgical treatment for patients with a non-acute ACL injury and persistent symptoms of instability.MethodsWe did a pragmatic, multicentre, superiority, randomised controlled trial in 29 secondary care National Health Service orthopaedic units in the UK. Patients with symptomatic knee problems (instability) consistent with an ACL injury were eligible. We excluded patients with meniscal pathology with characteristics that indicate immediate surgery. Patients were randomly assigned (1:1) by computer to either surgery (reconstruction) or rehabilitation (physiotherapy but with subsequent reconstruction permitted if instability persisted after treatment), stratified by site and baseline Knee Injury and Osteoarthritis Outcome Score—4 domain version (KOOS4). This management design represented normal practice. The primary outcome was KOOS4 at 18 months after randomisation. The principal analyses were intention-to-treat based, with KOOS4 results analysed using linear regression. This trial is registered with ISRCTN, ISRCTN10110685, and ClinicalTrials.gov, NCT02980367.FindingsBetween Feb 1, 2017, and April 12, 2020, we recruited 316 patients. 156 (49%) participants were randomly assigned to the surgical reconstruction group and 160 (51%) to the rehabilitation group. Mean KOOS4 at 18 months was 73·0 (SD 18·3) in the surgical group and 64·6 (21·6) in the rehabilitation group. The adjusted mean difference was 7·9 (95% CI 2·5–13·2; p=0·0053) in favour of surgical management. 65 (41%) of 160 patients allocated to rehabilitation underwent subsequent surgery according to protocol within 18 months. 43 (28%) of 156 patients allocated to surgery did not receive their allocated treatment. We found no differences between groups in the proportion of intervention-related complications.InterpretationSurgical reconstruction as a management strategy for patients with non-acute ACL injury with persistent symptoms of instability was clinically superior and more cost-effective in comparison with rehabilitation management

    Schizophrenia-associated somatic copy-number variants from 12,834 cases reveal recurrent NRXN1 and ABCB11 disruptions

    Get PDF
    While germline copy-number variants (CNVs) contribute to schizophrenia (SCZ) risk, the contribution of somatic CNVs (sCNVs)—present in some but not all cells—remains unknown. We identified sCNVs using blood-derived genotype arrays from 12,834 SCZ cases and 11,648 controls, filtering sCNVs at loci recurrently mutated in clonal blood disorders. Likely early-developmental sCNVs were more common in cases (0.91%) than controls (0.51%, p = 2.68e−4), with recurrent somatic deletions of exons 1–5 of the NRXN1 gene in five SCZ cases. Hi-C maps revealed ectopic, allele-specific loops forming between a potential cryptic promoter and non-coding cis-regulatory elements upon 5′ deletions in NRXN1. We also observed recurrent intragenic deletions of ABCB11, encoding a transporter implicated in anti-psychotic response, in five treatment-resistant SCZ cases and showed that ABCB11 is specifically enriched in neurons forming mesocortical and mesolimbic dopaminergic projections. Our results indicate potential roles of sCNVs in SCZ risk

    Information flow and protein dynamics: the interplay between nuclear magnetic resonance spectroscopy and molecular dynamics simulations

    Get PDF
    Proteins participate in information pathways in cells, both as links in the chain of signals, and as the ultimate effectors. Upon ligand binding, proteins undergo conformation and motion changes, which can be sensed by the following link in the chain of information. Nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) simulations represent powerful tools for examining the time-dependent function of biological molecules. The recent advances in NMR and the availability of faster computers have opened the door to more detailed analyses of structure, dynamics and interactions. Here we briefly describe the recent applications that allow NMR spectroscopy and MD simulations to offer unique insight into the basic motions that underlie information transfer within and between cells

    Zinc and Copper Ions Induce Aggregation of Human β-Crystallins

    No full text
    Cataracts are defined as the clouding of the lens due to the formation of insoluble protein aggregates. Metal ions exposure has been recognized as a risk factor in the cataract formation process. The γ and β crystallins are members of a larger family and share several structural features. Several studies have shown that copper and zinc ions induce the formation of γ-crystallins aggregates. However, the interaction of metal ions with β-crystallins, some of the most abundant crystallins in the lens, has not been explored until now. Here, we evaluate the effect of Cu(II) and Zn(II) ions on the aggregation of HβA1, as a representative of the acidic form, and HβB2, as a representative of the basic β-crystallins. We used several biophysical techniques and computational methods to show that Cu(II) and Zn(II) induce aggregation following different pathways. Both metal ions destabilize the proteins and impact protein folding. Copper induced a small conformational change in HβA1, leading to high-molecular-weight light-scattering aggregates, while zinc is more aggressive towards HβB2 and induces a larger conformational change. Our work provides information on the mechanisms of metal-induced aggregation of β-crystallins
    corecore