3 research outputs found

    Apolipoprotein E4 disrupts the neuroprotective action of sortilin in neuronal lipid metabolism and endocannabinoid signaling

    Get PDF
    INTRODUCTION: Apolipoprotein E (apoE) is a carrier for brain lipids and the most important genetic risk factor for Alzheimer's disease (AD). ApoE binds the receptor sortilin, which mediates uptake of apoE‐bound cargo into neurons. The significance of this uptake route for brain lipid homeostasis and AD risk seen with apoE4, but not apoE3, remains unresolved. METHODS: Combining neurolipidomics in patient specimens with functional studies in mouse models, we interrogated apoE isoform–specific functions for sortilin in brain lipid metabolism and AD. RESULTS: Sortilin directs the uptake and conversion of polyunsaturated fatty acids into endocannabinoids, lipid‐based neurotransmitters that act through nuclear receptors to sustain neuroprotective gene expression in the brain. This sortilin function requires apoE3, but is disrupted by binding of apoE4, compromising neuronal endocannabinoid metabolism and action. DISCUSSION: We uncovered the significance of neuronal apoE receptor sortilin in facilitating neuroprotective actions of brain lipids, and its relevance for AD risk seen with apoE4

    ApoE4 disrupts interaction of sortilin with fatty acid-binding protein 7 essential to promote lipid signaling

    Get PDF
    Sortilin is a neuronal receptor for apolipoprotein E. Sortilin-dependent uptake of lipidated apoE promotes conversion of polyunsaturated fatty acids (PUFA) into neuromodulators that induce anti-inflammatory gene expression in the brain. This neuroprotective pathway works with apoE3 but is lost with apoE4, the main risk factor for Alzheimer's disease (AD). Here, we elucidated steps in cellular handling of lipids through sortilin, and why they are disrupted by apoE4. Combining unbiased proteome screens with analyses in mouse models, we uncover interaction of sortilin with fatty acid-binding protein (FABP) 7, the intracellular carrier for PUFA in the brain. In the presence of apoE3, sortilin promotes functional expression of FABP7 and its ability to elicit lipid-dependent gene transcription. By contrast, apoE4 binding blocks sortilin sorting, causing catabolism of FABP7 and impairing lipid signaling. Reduced FABP7 levels in the brain of AD patients expressing apoE4 substantiate the relevance of these interactions for neuronal lipid homeostasis. Taken together, we document interaction of sortilin with mediators of extracellular and intracellular lipid transport that provides a mechanistic explanation for loss of a neuroprotective lipid metabolism in AD

    ApoE4 disrupts interaction of sortilin with fatty acid-binding protein 7 essential to promote lipid signaling

    Get PDF
    Sortilin is a receptor for neuronal uptake of apolipoprotein E. Sortilin-dependent uptake of lipidated apoE promotes conversion of polyunsaturated fatty acids (PUFA) into neuromodulators that induce anti-inflammatory gene expression in the brain. This neuroprotective pathway works with apoE3 but is lost with apoE4, the main risk factor for Alzheimer’s disease (AD). Here, we elucidated steps in cellular handling of lipids through sortilin, and why they are disrupted by apoE4. Combining unbiased proteome screens with analyses in mouse models, we uncover interaction of sortilin with fatty acid-binding protein (FABP) 7, the intracellular carrier for PUFA in the brain. In the presence of apoE3, sortilin promotes functional expression of FABP7 and its ability to elicit lipid-dependent gene transcription. By contrast, apoE4 binding blocks sortilin sorting, causing catabolism of FABP7 and impairing lipid signaling. Reduced FABP7 levels in the brain of AD patients expressing apoE4 substantiate the relevance of these interactions for neuronal lipid homeostasis. Taken together, we document interaction of sortilin with mediators of extracellular and intracellular lipid transport that provides a mechanistic explanation for loss of a neuroprotective lipid metabolism in AD
    corecore