84 research outputs found

    CMB Anomalies from Relic Anisotropy

    Get PDF
    Most of the analysis of the Cosmic Microwave Background relies on the assumption of statistical isotropy. However, given some recent evidence pointing against isotropy, as for instance the observed alignment of different multipoles on large scales, it is worth testing this assumption against the increasing amount of available data. As a pivot model, we assume that the spectrum of the primordial perturbations depends also on their directionality (rather than just on the magnitude of their momentum, as in the standard case). We explicitly compute the correlation matrix for the temperature anisotropies in the simpler case in which there is a residual isotropy between two spatial directions. As a concrete example, we consider a different initial expansion rate along one direction, and the following isotropization which takes place during inflation. Depending on the amount of inflation, this can lead to broken statistical isotropy on the largest observable scales.Comment: 6 pages, 2 .ps figure

    Testing model independent modified gravity with future large scale surveys

    Full text link
    Model-independent parametrisations of modified gravity have attracted a lot of attention over the past few years and numerous combinations of experiments and observables have been suggested to constrain the parameters used in these models. Galaxy clusters have been mentioned, but not looked at as extensively in the literature as some other probes. Here we look at adding galaxy clusters into the mix of observables and examine how they could improve the constraints on the modified gravity parameters. In particular, we forecast the constraints from combining Planck satellite Cosmic Microwave Background (CMB) measurements and Sunyaev-Zeldovich (SZ) cluster catalogue with a DES-like weak lensing survey. We find that cluster counts significantly improve the constraints over those derived using CMB and WL. We then look at surveys further into the future, to see how much better it may be feasible to make the constraints.Comment: 14 pages, 8 figures, Updated to match version published in JCA

    Planck and WMAP constraints on generalised Hubble flow inflationary trajectories

    Get PDF
    We use the Hamilton--Jacobi formalism to constrain the space of possible single field, inflationary Hubble flow trajectories when compared to the WMAP and Planck satellites Cosmic Microwave Background (CMB) results. This method yields posteriors on the space of Hubble Slow Roll (HSR) parameters that uniquely determine the history of the Hubble parameter during the inflating epoch. The trajectories are used to numerically determine the observable primordial power spectrum and bispectra that can then be compared to observations. Our analysis is used to infer the most likely shape of the inflaton potential V(ϕ)V(\phi) and also yields a prediction for, fNLf_{\rm NL}, the dimensionless amplitude of the non-Gaussian bispectrum.Comment: 11 pages, 12 figure
    corecore