84 research outputs found

    Approaches in biotechnological applications of natural polymers

    Get PDF
    Natural polymers, such as gums and mucilage, are biocompatible, cheap, easily available and non-toxic materials of native origin. These polymers are increasingly preferred over synthetic materials for industrial applications due to their intrinsic properties, as well as they are considered alternative sources of raw materials since they present characteristics of sustainability, biodegradability and biosafety. As definition, gums and mucilages are polysaccharides or complex carbohydrates consisting of one or more monosaccharides or their derivatives linked in bewildering variety of linkages and structures. Natural gums are considered polysaccharides naturally occurring in varieties of plant seeds and exudates, tree or shrub exudates, seaweed extracts, fungi, bacteria, and animal sources. Water-soluble gums, also known as hydrocolloids, are considered exudates and are pathological products; therefore, they do not form a part of cell wall. On the other hand, mucilages are part of cell and physiological products. It is important to highlight that gums represent the largest amounts of polymer materials derived from plants. Gums have enormously large and broad applications in both food and non-food industries, being commonly used as thickening, binding, emulsifying, suspending, stabilizing agents and matrices for drug release in pharmaceutical and cosmetic industries. In the food industry, their gelling properties and the ability to mold edible films and coatings are extensively studied. The use of gums depends on the intrinsic properties that they provide, often at costs below those of synthetic polymers. For upgrading the value of gums, they are being processed into various forms, including the most recent nanomaterials, for various biotechnological applications. Thus, the main natural polymers including galactomannans, cellulose, chitin, agar, carrageenan, alginate, cashew gum, pectin and starch, in addition to the current researches about them are reviewed in this article.. }To the Conselho Nacional de Desenvolvimento Cientfíico e Tecnológico (CNPq) for fellowships (LCBBC and MGCC) and the Coordenação de Aperfeiçoamento de Pessoal de Nvíel Superior (CAPES) (PBSA). This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, the Project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) and COMPETE 2020 (POCI-01-0145-FEDER-006684) (JAT)

    Grafting efficiency of synthetic polymers onto biomaterials: A comparative study of grafting-from versus grafting-to

    No full text
    In the present study, the two grafting techniques grafting-from - by activators regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP) - and grafting-to - by copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) - were systematically compared, employing cellulose as a substrate. In order to obtain a meaningful comparison, it is crucial that the graft lengths of the polymers that are grafted from and to the substrates are essentially identical. Herein, this was achieved by utilizing the free polymer formed in parallel to the grafting-from reaction as the polymer for the grafting-to reaction. Four graft lengths were investigated, and the molar masses of the four free polymers (21 ≀ Mn ≀ 100 kDa; 1.07 ≀ M ≀ 1.26), i.e. the polymers subsequently employed in the grafting-to reaction, were shown to be in the same range as the molar masses of the polymers grafted from the surface (23 ≀ Mn ≀ 87 kDa; 1.08 ≀ M ≀ 1.31). The molecular weights of the chains grafted from the surface were established after cleavage from the cellulose substrates via size exclusion chromatography (SEC). High-resolution Fourier transform infrared microscopy (FT-IRM) was employed as an efficient tool to study the spatial distribution of the polymer content on the grafted substrates. In addition, the functionalized substrates were analyzed by X-ray photoelectron spectroscopy (XPS), contact angle (CA) measurements, and field-emission scanning electron microscopy (FE-SEM). For cellulose substrates modified via the grafting-from approach, the content of polymer on the surfaces increased with increasing graft length, confirming the possibility to tailor not only the length of the polymer grafts but also the polymeric content on the surface. In comparison, for the grafting-to reaction, the grafted content could not be controlled by varying the length of the preformed polymer: the polymer content was essentially the same for the four graft lengths. Consequently, the obtained results, when employing cellulose as a substrate and under these conditions, suggest that the grafting-from approach is superior to the grafting-to technique with respect to controlling the distribution of the polymeric content on the surface. © 2012 American Chemical Society
    • 

    corecore