2,020 research outputs found

    Red Runaways II: Low mass Hills stars in SDSS Stripe 82

    Full text link
    Stars ejected from the Galactic centre can be used to place important constraints on the Milky Way potential. Since existing hypervelocity stars are too distant to accurately determine orbits, we have conducted a search for nearby candidates using full three-dimensional velocities. Since the efficacy of such studies are often hampered by deficiencies in proper motion catalogs, we have chosen to utilize the reliable, high-precision SDSS Stripe 82 proper motion catalog. Although we do not find any candidates which have velocities in excess of the escape speed, we identify 226 stars on orbits that are consistent with Galactic centre ejection. This number is significantly larger than what we would expect for halo stars on radial orbits and cannot be explained by disk or bulge contamination. If we restrict ourselves to metal-rich stars, we find 29 candidates with [Fe/H] > -0.8 dex and 10 with [Fe/H] > -0.6 dex. Their metallicities are more consistent with what we expect for bulge ejecta, and so we believe these candidates are especially deserving of further study. We have supplemented this sample using our own radial velocities, developing an algorithm to use proper motions for optimizing candidate selection. This technique provides considerable improvement on the blind spectroscopic sample of SDSS, being able to identify candidates with an efficiency around 20 times better than a blind search.Comment: 13 pages, accepted for publication in Ap

    Nearby Low-Mass Hypervelocity Stars

    Full text link
    Hypervelocity stars are those that have speeds exceeding the escape speed and are hence unbound from the Milky Way. We investigate a sample of low-mass hypervelocity candidates obtained using data from the high-precision SDSS Stripe 82 catalogue, which we have combined with spectroscopy from the 200-inch Hale Telescope at Palomar Observatory. We find four good candidates, but without metallicities it is difficult to pin-down their distances and therefore total velocities. Our best candidate has a significant likelihood that it is escaping the Milky Way for a wide-range of metallicities.Comment: 5 pages; Contribution to proceedings for "The Milky Way Unravelled by Gaia" conference, Barcelona, Dec 201

    The shapes of Milky Way satellites: looking for signatures of tidal stirring

    Full text link
    We study the shapes of Milky Way satellites in the context of the tidal stirring scenario for the formation of dwarf spheroidal galaxies. The standard procedures used to measure shapes involve smoothing and binning of data and thus may not be sufficient to detect structural properties like bars, which are usually subtle in low surface brightness systems. Taking advantage of the fact that in nearby dwarfs photometry of individual stars is available we introduce discrete measures of shape based on the two-dimensional inertia tensor and the Fourier bar mode. We apply these measures of shape first to a variety of simulated dwarf galaxies formed via tidal stirring of disks embedded in dark matter halos and orbiting the Milky Way. In addition to strong mass loss and randomization of stellar orbits, the disks undergo morphological transformation that typically involves the formation of a triaxial bar after the first pericenter passage. These tidally induced bars persist for a few Gyr before being shortened towards a more spherical shape if the tidal force is strong enough. We test this prediction by measuring in a similar way the shape of nearby dwarf galaxies, satellites of the Milky Way. We detect inner bars in Ursa Minor, Sagittarius, LMC and possibly Carina. In addition, six out of eleven studied dwarfs show elongated stellar distributions in the outer parts that may signify transition to tidal tails. We thus find the shapes of Milky Way satellites to be consistent with the predictions of the tidal stirring model.Comment: 14 pages, 11 figures, accepted for publication in Ap

    Kinematics in Kapteyn's Selected Area 76: Orbital Motions Within the Highly Substructured Anticenter Stream

    Get PDF
    We have measured the mean three-dimensional kinematics of stars in Kapteyn's Selected Area (SA) 76 (l=209.3, b=26.4 degrees) that were selected to be Anticenter Stream (ACS) members on the basis of their radial velocities, proper motions, and location in the color-magnitude diagram. From a total of 31 stars ascertained to be ACS members primarily from its main sequence turnoff, a mean ACS radial velocity (derived from spectra obtained with the Hydra multi-object spectrograph on the WIYN 3.5m telescope) of V_helio = 97.0 +/- 2.8 km/s was determined, with an intrinsic velocity dispersion sigma_0 = 12.8 \pm 2.1 km/s. The mean absolute proper motions of these 31 ACS members are mu_alpha cos (delta) = -1.20 +/- 0.34 mas/yr and mu_delta = -0.78 \pm 0.36 mas/yr. At a distance to the ACS of 10 \pm 3 kpc, these measured kinematical quantities produce an orbit that deviates by ~30 degrees from the well-defined swath of stellar overdensity constituting the Anticenter Stream in the western portion of the Sloan Digital Sky Survey footprint. We explore possible explanations for this, and suggest that our data in SA 76 are measuring the motion of a kinematically cold sub-stream among the ACS debris that was likely a fragment of the same infalling structure that created the larger ACS system. The ACS is clearly separated spatially from the majority of claimed Monoceros ring detections in this region of the sky; however, with the data in hand, we are unable to either confirm or rule out an association between the ACS and the poorly-understood Monoceros structure.Comment: Accepted to ApJ. 48 pages, 20 figures, preprint forma
    • …
    corecore