1,208 research outputs found

    Greedy kernel methods for accelerating implicit integrators for parametric ODEs

    Full text link
    We present a novel acceleration method for the solution of parametric ODEs by single-step implicit solvers by means of greedy kernel-based surrogate models. In an offline phase, a set of trajectories is precomputed with a high-accuracy ODE solver for a selected set of parameter samples, and used to train a kernel model which predicts the next point in the trajectory as a function of the last one. This model is cheap to evaluate, and it is used in an online phase for new parameter samples to provide a good initialization point for the nonlinear solver of the implicit integrator. The accuracy of the surrogate reflects into a reduction of the number of iterations until convergence of the solver, thus providing an overall speedup of the full simulation. Interestingly, in addition to providing an acceleration, the accuracy of the solution is maintained, since the ODE solver is still used to guarantee the required precision. Although the method can be applied to a large variety of solvers and different ODEs, we will present in details its use with the Implicit Euler method for the solution of the Burgers equation, which results to be a meaningful test case to demonstrate the method's features

    New Techniques for Relating Dynamically Close Galaxy Pairs to Merger and Accretion Rates : Application to the SSRS2 Redshift Survey

    Get PDF
    We introduce two new pair statistics, which relate close galaxy pairs to the merger and accretion rates. We demonstrate the importance of correcting these (and other) pair statistics for selection effects related to sample depth and completeness. In particular, we highlight the severe bias that can result from the use of a flux-limited survey. The first statistic, denoted N_c, gives the number of companions per galaxy, within a specified range in absolute magnitude. N_c is directly related to the galaxy merger rate. The second statistic, called L_c, gives the total luminosity in companions, per galaxy. This quantity can be used to investigate the mass accretion rate. Both N_c and L_c are related to the galaxy correlation function and luminosity function in a straightforward manner. We outline techniques which account for various selection effects, and demonstrate the success of this approach using Monte Carlo simulations. If one assumes that clustering is independent of luminosity (which is appropriate for reasonable ranges in luminosity), then these statistics may be applied to flux-limited surveys. These techniques are applied to a sample of 5426 galaxies in the SSRS2 redshift survey. Using close dynamical pairs, we find N_c(-21<M_B<-18) = 0.0226+/-0.0052 and L_c(-21<M_B<-18) = 0.0216+/-0.0055 10^{10} h^2 L_sun at z=0.015. These are the first secure estimates of low-z close pair statistics. If N_c remains fixed with redshift, simple assumptions imply that ~ 6.6% of present day galaxies with -21<M_B<-18 have undergone mergers since z=1. When applied to redshift surveys of more distant galaxies, these techniques will yield the first robust estimates of evolution in the galaxy merger and accretion rates. [Abridged]Comment: 26 pages (including 10 postscript figures) plus 3 gif figures. Accepted for publication in ApJ. Paper (including full resolution images) also available at http://www.astro.utoronto.ca/~patton/ssrs2, along with associated pair classification experiment (clickable version of Figure 5

    Is there Evidence for a Hubble bubble? The Nature of Type Ia Supernova Colors and Dust in External Galaxies

    Get PDF
    We examine recent evidence from the luminosity-redshift relation of Type Ia Supernovae (SNe Ia) for the ∌3σ\sim 3 \sigma detection of a ``Hubble bubble'' -- a departure of the local value of the Hubble constant from its globally averaged value \citep{Jha:07}. By comparing the MLCS2k2 fits used in that study to the results from other light-curve fitters applied to the same data, we demonstrate that this is related to the interpretation of SN color excesses (after correction for a light-curve shape-color relation) and the presence of a color gradient across the local sample. If the slope of the linear relation (ÎČ\beta) between SN color excess and luminosity is fit empirically, then the bubble disappears. If, on the other hand, the color excess arises purely from Milky Way-like dust, then SN data clearly favors a Hubble bubble. We demonstrate that SN data give ÎČ≃2\beta \simeq 2, instead of the ÎČ≃4\beta \simeq 4 one would expect from purely Milky-Way-like dust. This suggests that either SN intrinsic colors are more complicated than can be described with a single light-curve shape parameter, or that dust around SN is unusual. Disentangling these possibilities is both a challenge and an opportunity for large-survey SN Ia cosmology.Comment: Further information and data at http://qold.astro.utoronto.ca/conley/bubble/ Accepted for publication in ApJ

    Galaxy Clustering and Large-Scale Structure from z = 0.2 to z = 0.5 in Two Norris Redshift Surveys

    Full text link
    (abridged) We present a study of the nature and evolution of large-scale structure based on two independent redshift surveys of faint field galaxies conducted with the 176-fiber Norris Spectrograph on the Palomar 200-inch telescope. The two surveys together sparsely cover ~20 sq. degrees and contain 835 r < 21 mag galaxies with redshifts 0.2 < z < 0.5. Both surveys have a median redshift of z = 0.30. In order to obtain a rough estimate of the cosmic variance, we analyze the two surveys independently. We measure the comoving correlation length to be 3.70 +/- 0.13 h^-1 Mpc at z = 0.30 with a power-law slope gamma = 1.77 +/- 0.05. Dividing the sample into low (0.2 < z < 0.3) and high (0.32 < z < 0.5) redshift intervals, we see no evidence for a change in the comoving correlation length over the redshift range 0.2 < z < 0.5. Similar to the well-established results in the local universe, we find that intrinsically bright galaxies are more strongly clustered than intrinsically faint galaxies and that galaxies with little ongoing star formation, as judged from the rest-frame equivalent width of the [OII]3727, are more strongly clustered than galaxies with significant ongoing star formation. The rest-frame pairwise velocity dispersion of the sample is 326^+67_-52 km s^-1, ~25% lower than typical values measured locally. The appearance of the galaxy distribution, particularly in the more densely sampled Abell 104 field, is quite striking. The pattern of sheets and voids which has been observed locally continues at least to z ~ 0.5. A friends-of-friends analysis of the galaxy distribution supports the visual impression that > 90% of all galaxies at z < 0.5 are part of larger structures with overdensities of > 5.Comment: 40 pages including 26 Postscript figures; revised version to match version accepted by Ap

    The Luminosity Function of Field Galaxies in the CNOC1 Redshift Survey

    Get PDF
    We have computed the luminosity function for 389 field galaxies from the Canadian Network for Observational Cosmology cluster redshift survey (CNOC1), over redshifts z = 0.2-0.6. We find Schechter parameters M^* - 5 log h = -19.6 \pm 0.3 and \alpha = -0.9 \pm 0.2 in rest-frame B_{AB}. We have also split our sample at the color of a redshifted but nonevolving Sbc galaxy, and find distinctly different luminosity functions for red and blue galaxies. Red galaxies have a shallow slope \alpha \approx -0.4 and dominate the bright end of the luminosity function, while blue galaxies have a steep \alpha \approx -1.4 and prevail at the faint end. Comparisons of the CNOC1 results to those from the Canada-France (CFRS) and Autofib redshift surveys show broad agreement among these independent samples, but there are also significant differences which will require larger samples to resolve. Also, in CNOC1 the red galaxy luminosity density stays about the same over the range z = 0.2-0.6, while the blue galaxy luminosity density increases steadily with redshift. These results are consistent with the trend of the luminosity density vs. redshift relations seen in the CFRS, though the normalizations of the luminosity densities appear to differ for blue galaxies. Comparison to the local luminosity function from the Las Campanas redshift survey (LCRS) shows that the luminosity density at z \approx 0.1 is only about half that seen at z \approx 0.4. A change in the luminosity function shape, particularly at the faint end, appears to be required to match the CNOC1 and LCRS luminosity functions, if galaxy evolution is the sole cause of the differences seen. However, it should be noted that the specific details of the construction of different surveys may complicate the comparison of results and so may need to be considered carefully.Comment: 22 pages, including 6 postscript figures, uses AASTEX v4.0 style files. Corrected minor typos and updated references. Results and conclusions unchanged. Final version to appear in the Astrophysical Journa

    Virial mass in DGP brane cosmology

    Full text link
    We study the virial mass discrepancy in the context of a DPG brane-world scenario and show that such a framework can offer viable explanations to account for the mass discrepancy problem. This is done by defining a geometrical mass N\mathcal{N} that we prove to be proportional to the virial mass. Estimating N\mathcal{N} using observational data, we show that it behaves linearly with rr and has a value of the order of M200M_{200}, pointing to a possible resolution of the virial mass discrepancy. We also obtain the radial velocity dispersion of galaxy clusters and show that it is compatible with the radial velocity dispersion profile of such clusters. This velocity dispersion profile can be used to differentiate various models predicting the virial mass.Comment: 12 pages, 1 figure, to appear in CQ
    • 

    corecore