103 research outputs found

    Estrous cycle influences the expression of neuronal nitric oxide synthase in the hypothalamus and limbic system of female mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nitric oxide plays an important role in the regulation of male and female sexual behavior in rodents, and the expression of the nitric oxide synthase (NOS) is influenced by testosterone in the male rat, and by estrogens in the female. We have here quantitatively investigated the distribution of nNOS immunoreactive (ir) neurons in the limbic hypothalamic region of intact female mice sacrificed during different phases of estrous cycle.</p> <p>Results</p> <p>Changes were observed in the medial preoptic area (MPA) (significantly higher number in estrus) and in the arcuate nucleus (Arc) (significantly higher number in proestrus). In the ventrolateral part of the ventromedial nucleus (VMHvl) and in the bed nucleus of the stria terminalis (BST) no significant changes have been observed. In addition, by comparing males and females, we observed a stable sex dimorphism (males have a higher number of nNOS-ir cells in comparison to almost all the different phases of the estrous cycle) in the VMHvl and in the BST (when considering only the less intensely stained elements). In the MPA and in the Arc sex differences were detected only comparing some phases of the cycle.</p> <p>Conclusion</p> <p>These data demonstrate that, in mice, the expression of nNOS in some hypothalamic regions involved in the control of reproduction and characterized by a large number of estrogen receptors is under the control of gonadal hormones and may vary according to the rapid variations of hormonal levels that take place during the estrous cycle.</p

    Effects of estrous cycle and xenoestrogens expositions on mice nitric oxide producing system

    Get PDF
    Nitric oxide (NO)&shy;containing neurons are widely distributed within the central nervous system, including regions involved in the control of reproduction and sexual behavior. Nitrergic neurons may co-localize with gonadal hormone receptors and gonadal hormones may influence neuronal NO synthase expression in adulhood as well as during development. In rodents, the female, in physiological conditions, is exposed to short&shy;term changes of gonadal hormones levels (estrous cycle). Our studies, performed in mouse hypothalamic and limbic systems, reveal that the expression of neuronal NO synthase may vary according to the rapid variations of hormonal levels that take place during the estrous cycle. This is in accordance with the hypothesis that gonadal hormone activation of NO-cGMP pathway is important for mating behavior. NO-producing system appears particularly sensitive to alterations of endocrine balance during development, as demonstrated by our experiments utilizing perinatal exposure to bisphenol A, an endocrine disrupting chemical. In fact, significant effects were detected in adulthood in the medial preoptic nucleus and in the ventromedial subdivision of the bed nucleus of the stria terminalis. Therefore, alteration of the neuronal NO synthase expression may be one of the causes of the important behavioral alterations observed in bisphenol-exposed animals

    The parvocellular vasotocin system of Japanese quail: a developmental and adult model for the study of influences of gonadal hormones on sexually differentiated and behaviorally relevant neural circuits.

    Get PDF
    Vasotocin (VT; the antidiuretic hormone of birds) is synthesized by diencephalic magnocellular neurons projecting to the neurohypophysis. A sexually dimorphic system of VT-immunoreactive (ir) parvocellular elements has been described within the male medial preoptic nucleus (POM) and the nucleus of the stria terminalis, pars medialis (BSTm). VT-ir fibers are present in many diencephalic and extradiencephalic locations, and quantitative morphometric analyses demonstrated their sexually dimorphic distribution in regions involved in the control of different aspects of reproduction. Moreover, systemic or intracerebroventricular injections of VT markedly inhibit the expression of some aspects of male sexual behavior. In adult animals, circulating levels of testosterone (T) have a profound influence on the VT immunoreactivity within BSTm, POM, and lateral septum. Castration markedly decreases the immunoreaction, whereas T-replacement therapy restores a situation similar to the intact birds. We observed no changes in gonadectomized females treated with T. These changes parallel similar changes in male copulatory behavior (not present in castrated male quail, fully expressed in castrated, T-treated males). The restoration by T of the VT immunoreactivity in castrated male quail could be fully mimicked by a treatment with estradiol (E(2)), suggesting that the aromatization of T into E(2) may play a key limiting role in both the activation of male sexual behavior and the induction of VT synthesis. This dimorphism has an organizational nature: administration of E(2) to quail embryos (a treatment that abolishes male sexual behavior) results in a dramatic decrease of the VT immunoreactivity in sexually dimorphic regions. Conversely, the inhibition of E(2) synthesis during embryonic life (a treatment that stimulates the expression of male copulatory behavior in treated females exposed in adulthood to T) results in a malelike distribution of VT immunoreactivity. The VT parvocellular system of the Japanese quail can therefore be considered an accurate marker of the sexual differentiation of brain circuits mediating copulatory behavior and could be a very sensitive indicator of the activity of estrogenlike substances on neural circuits
    corecore