3 research outputs found

    Critical Roles of Phosphorylation and Actin Binding Motifs, but Not the Central Proline-rich Region, for Ena/Vasodilator-stimulated Phosphoprotein (VASP) Function during Cell Migration

    No full text
    The Ena/vasodilator-stimulated phosphoprotein (VASP) protein family is implicated in the regulation of a number of actin-based cellular processes, including lamellipodial protrusion necessary for whole cell translocation. A growing body of evidence derived largely from in vitro biochemical experiments using purified proteins, cell-free extracts, and pathogen motility has begun to suggest various mechanistic roles for Ena/VASP proteins in the control of actin dynamics. Using complementation of phenotypes in Ena/VASP-deficient cells and overexpression in normal fibroblasts, we have assayed the function of a panel of mutants in one member of this family, Mena, by mutating highly conserved sequence elements found in this protein family. Surprisingly, deletion of sites required for binding of the actin monomer-binding protein profilin, a known ligand of Ena/VASP proteins, has no effect on the ability of Mena to regulate random cell motility. Our analysis revealed two features essential for Ena/VASP function in cell movement, cyclic nucleotide-dependent kinase phosphorylation sites and an F-actin binding motif. Interestingly, expression of the C-terminal EVH2 domain alone is sufficient to complement loss of Ena/VASP function in random cell motility

    Contribution of Ena/VASP Proteins to Intracellular Motility of Listeria Requires Phosphorylation and Proline-rich Core but Not F-Actin Binding or Multimerization

    Get PDF
    The Listeria model system has been essential for the identification and characterization of key regulators of the actin cytoskeleton such as the Arp2/3 complex and Ena/vasodilator-stimulated phosphoprotein (VASP) proteins. Although the role of Ena/VASP proteins in Listeria motility has been extensively studied, little is known about the contributions of their domains and phosphorylation state to bacterial motility. To address these issues, we have generated a panel of Ena/VASP mutants and, upon expression in Ena/VASP-deficient cells, evaluated their contribution to Ena/VASP function in Listeria motility. The proline-rich region, the putative G-actin binding site, and the Ser/Thr phosphorylation of Ena/VASP proteins are all required for efficient Listeria motility. Surprisingly, the interaction of Ena/VASP proteins with F-actin and their potential ability to form multimers are both dispensable for their involvement in this process. Our data suggest that Ena/VASP proteins contribute to Listeria motility by regulating both the nucleation and elongation of actin filaments at the bacterial surface
    corecore