19 research outputs found

    Preliminary spatiotemporal analysis of the association between socio-environmental factors and suicide

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The seasonality of suicide has long been recognised. However, little is known about the relative importance of socio-environmental factors in the occurrence of suicide in different geographical areas. This study examined the association of climate, socioeconomic and demographic factors with suicide in Queensland, Australia, using a spatiotemporal approach.</p> <p>Methods</p> <p>Seasonal data on suicide, demographic variables and socioeconomic indexes for areas in each Local Government Area (LGA) between 1999 and 2003 were acquired from the Australian Bureau of Statistics. Climate data were supplied by the Australian Bureau of Meteorology. A multivariable generalized estimating equation model was used to examine the impact of socio-environmental factors on suicide.</p> <p>Results</p> <p>The preliminary data analyses show that far north Queensland had the highest suicide incidence (e.g., Cook and Mornington Shires), while the south-western areas had the lowest incidence (e.g., Barcoo and Bauhinia Shires) in all the seasons. Maximum temperature, unemployment rate, the proportion of Indigenous population and the proportion of population with low individual income were statistically significantly and positively associated with suicide. There were weaker but not significant associations for other variables.</p> <p>Conclusion</p> <p>Maximum temperature, the proportion of Indigenous population and unemployment rate appeared to be major determinants of suicide at a LGA level in Queensland.</p

    Efficient Olefin Diboration by a Base-Free Platinum Catalyst

    No full text

    η 2

    No full text

    Predicting the Mechanical Response of Polyhydroxyalkanoate Biopolymers Using Molecular Dynamics Simulations

    No full text
    Polyhydroxyalkanoates (PHAs) have emerged as a promising class of biosynthesizable, biocompatible, and biodegradable polymers to replace petroleum-based plastics for addressing the global plastic pollution problem. Although PHAs offer a wide range of chemical diversity, the structure–property relationships in this class of polymers remain poorly established. In particular, the available experimental data on the mechanical properties is scarce. In this contribution, we have used molecular dynamics simulations employing a recently developed forcefield to predict chemical trends in mechanical properties of PHAs. Specifically, we make predictions for Young’s modulus, and yield stress for a wide range of PHAs that exhibit varying lengths of backbone and side chains as well as different side chain functional groups. Deformation simulations were performed at six different strain rates and six different temperatures to elucidate their influence on the mechanical properties. Our results indicate that Young’s modulus and yield stress decrease systematically with increase in the number of carbon atoms in the side chain as well as in the polymer backbone. In addition, we find that the mechanical properties were strongly correlated with the chemical nature of the functional group. The functional groups that enhance the interchain interactions lead to an enhancement in both the Young’s modulus and yield stress. Finally, we applied the developed methodology to study composition-dependence of the mechanical properties for a selected set of binary and ternary copolymers. Overall, our work not only provides insights into rational design rules for tailoring mechanical properties in PHAs, but also opens up avenues for future high throughput atomistic simulation studies geared towards identifying functional PHA polymer candidates for targeted applications

    Characterization of Polyhydroxybutyrate-Based Composites Prepared by Injection Molding

    No full text
    The waste generated by single-use plastics is often non-recyclable and non-biodegradable, inevitably ending up in our landfills, ecosystems, and food chain. Through the introduction of biodegradable polymers as substitutes for common plastics, we can decrease our impact on the planet. In this study, we evaluate the changes in mechanical and thermal properties of polyhydroxybutyrate-based composites with various additives: Microspheres, carbon fibers or polyethylene glycol (2000, 10,000, and 20,000 MW). The mixtures were injection molded using an in-house mold attached to a commercial extruder. The resulting samples were characterized using microscopy and a series of spectroscopic, thermal, and mechanical techniques. We have shown that the addition of carbon fibers and microspheres had minimal impact on thermal stability, whereas polyethylene glycol showed slight improvements at higher molecular weights. All of the composite samples showed a decrease in hardness and compressibility. The findings described in this study will improve our understanding of polyhydroxybutyrate-based composites prepared by injection molding, enabling advancements in integrating biodegradable plastics into everyday products

    C-H Bond Activation with Neutral Platinum Methyl Complexes

    No full text
    The selective metal-catalyzed oxidation of alkanes to alcohols offers immense opportunities for saving energy and reducing waste in the petroleum and chemical manufacturing industries. Robust transition metal complexes with chelating nitrogen ligands show great promise as homogeneous catalysts for this reaction, but a practical system has yet to be identified. In this work a variety of neutral platinum methyl complexes with bidentate anionic N,N- and N,C-donor ligands were prepared. Ligand backbones included one, two, and three-atom bridges between the donor atoms. Redox properties of the new complexes were investigated using competition studies with I_2 and evaluating equilibrium constants between divalent methyl complexes and their tetravalent diiodides. The ease of oxidation was amidinate > β-diketiminate > iminopyrrolide. Studies of benzene C-H bond activation using iminopyrrolide platinum complexes were consistent with rate determining benzene association and revealed a novel geometric effect on the rate for iminopyrrolide ligands

    Biodegradation Studies of Polyhydroxybutyrate and Polyhydroxybutyrate-<i>co</i>-Polyhydroxyvalerate Films in Soil

    No full text
    Due to increased environmental pressures, significant research has focused on finding suitable biodegradable plastics to replace ubiquitous petrochemical-derived polymers. Polyhydroxyalkanoates (PHAs) are a class of polymers that can be synthesized by microorganisms and are biodegradable, making them suitable candidates. The present study looks at the degradation properties of two PHA polymers: polyhydroxybutyrate (PHB) and polyhydroxybutyrate-co-polyhydroxyvalerate (PHBV; 8 wt.% valerate), in two different soil conditions: soil fully saturated with water (100% relative humidity, RH) and soil with 40% RH. The degradation was evaluated by observing the changes in appearance, chemical signatures, mechanical properties, and molecular weight of samples. Both PHB and PHBV were degraded completely after two weeks in 100% RH soil conditions and showed significant reductions in mechanical properties after just three days. The samples in 40% RH soil, however, showed minimal changes in mechanical properties, melting temperatures/crystallinity, and molecular weight over six weeks. By observing the degradation behavior for different soil conditions, these results can pave the way for identifying situations where the current use of plastics can be replaced with biodegradable alternatives
    corecore