2,084 research outputs found

    Automated Classification of Periodic Variable Stars detected by the Wide-field Infrared Survey Explorer

    Get PDF
    We describe a methodology to classify periodic variable stars identified using photometric time-series measurements constructed from the Wide-field Infrared Survey Explorer (WISE) full-mission single-exposure Source Databases. This will assist in the future construction of a WISE Variable Source Database that assigns variables to specific science classes as constrained by the WISE observing cadence with statistically meaningful classification probabilities. We have analyzed the WISE light curves of 8273 variable stars identified in previous optical variability surveys (MACHO, GCVS, and ASAS) and show that Fourier decomposition techniques can be extended into the mid-IR to assist with their classification. Combined with other periodic light-curve features, this sample is then used to train a machine-learned classifier based on the random forest (RF) method. Consistent with previous classification studies of variable stars in general, the RF machine-learned classifier is superior to other methods in terms of accuracy, robustness against outliers, and relative immunity to features that carry little or redundant class information. For the three most common classes identified by WISE: Algols, RR Lyrae, and W Ursae Majoris type variables, we obtain classification efficiencies of 80.7%, 82.7%, and 84.5% respectively using cross-validation analyses, with 95% confidence intervals of approximately +/-2%. These accuracies are achieved at purity (or reliability) levels of 88.5%, 96.2%, and 87.8% respectively, similar to that achieved in previous automated classification studies of periodic variable stars.Comment: 48 pages, 17 figures, 1 table, accepted by A

    Continued Exploration of the Wetting Phase Diagram

    Get PDF
    Measurements are presented of the state of wetting of a binary liquid mixture on heavily silylated glass, which are believed to probe a new region of the wetting phase diagram. We find unusual temperature dependence and the first experimental evidence of a possible partial drying transition recently predicted by Ebner and Saam for the case of strong short-range substrate-liquid forces opposed by a weak long-range force

    Temperature-Driven Motion of a Wetting Layer

    Get PDF
    The wetting layer formed by a phase-separated binary liquid mixture in contact with a glass substrate is observed to have a large nonequilibrium response in thickness to small temperature perturbations. An independent theoretical and physical picture is developed, which also provides a direct means of measuring the forces responsible for wetting and their effect on the dynamics of diffusion-limited interfacial motion. As an example, the curvature and anharmonicity of the minimum in the effective interface potential are found

    Wetting Phenomena of Binary Liquid Mixtures on Chemically Altered Substrates

    Get PDF
    We report measurements of the state of wetting of two liquid mixtures at coexistence near their respective critical consolute temperatures. Borosilicate glass capillary tubes were reacted with hexamethyldisilazane to produce substrates of uniform and controlled silylation. Surfaces of low coverage exhibit a series of first-order partial to complete wetting transitions and obey a short-range force scaling relation. Surfaces of high coverage yield surprising results which may be understood as a consequence of long-range forces

    Capillary Behavior of Binary Liquid Mixtures Near Criticality: Rise and Kinetics

    Get PDF
    In three different phase-separated binary liquid mixtures we have observed stationary capillary rises in which the meniscus curvature is inconsistent with the sign of the rise. This ‘‘inverted-meniscus’’ configuration occurs within approximately 50 mK of the mixture’s critical temperature and shows no sign of decay after much longer than the characteristic time for relaxation. We also report experiments showing that perturbation of the wetting layer inside the capillary tube can dramatically affect the capillary rise. This motivates three scenarios in which the behavior of the wetting layer foils an equilibrium capillary rise measurement of the contact angle and produces an inverted meniscus

    Divergence of Voronoi Cell Anisotropy Vector: A Threshold-Free Characterization of Local Structure in Amorphous Materials

    Get PDF
    Characterizing structural inhomogeneity is an essential step in understanding the mechanical response of amorphous materials. We introduce a threshold-free measure based on the field of vectors pointing from the center of each particle to the centroid of the Voronoi cell in which the particle resides. These vectors tend to point in toward regions of high free volume and away from regions of low free volume, reminiscent of sinks and sources in a vector field. We compute the local divergence of these vectors, where positive values correspond to overpacked regions and negative values identify underpacked regions within the material. Distributions of this divergence are nearly Gaussian with zero mean, allowing for structural characterization using only the moments of the distribution. We explore how the standard deviation and skewness vary with the packing fraction for simulations of bidisperse systems and find a kink in these moments that coincides with the jamming transition

    Hubble Space Telescope Planetary Camera Images of NGC 1316

    Full text link
    We present HST Planetary Camera V and I~band images of the central region of the peculiar giant elliptical galaxy NGC 1316. The inner profile is well fit by a nonisothermal core model with a core radius of 0.41" +/- 0.02" (34 pc). At an assumed distance of 16.9 Mpc, the deprojected luminosity density reaches \sim 2.0 \times 10^3 L_{\sun} pc−3^{-3}. Outside the inner two or three arcseconds, a constant mass-to-light ratio of ∼2.2±0.2\sim 2.2 \pm 0.2 is found to fit the observed line width measurements. The line width measurements of the center indicate the existence of either a central dark object of mass 2 \times 10^9 M_{\sun}, an increase in the stellar mass-to-light ratio by at least a factor of two for the inner few arcseconds, or perhaps increasing radial orbit anisotropy towards the center. The mass-to-light ratio run in the center of NGC 1316 resembles that of many other giant ellipticals, some of which are known from other evidence to harbor central massive dark objects (MDO's). We also examine twenty globular clusters associated with NGC 1316 and report their brightnesses, colors, and limits on tidal radii. The brightest cluster has a luminosity of 9.9 \times 10^6 L_{\sun} (MV=−12.7M_V = -12.7), and the faintest detectable cluster has a luminosity of 2.4 \times 10^5 L_{\sun} (MV=−8.6M_V = -8.6). The globular clusters are just barely resolved, but their core radii are too small to be measured. The tidal radii in this region appear to be ≤\le 35 pc. Although this galaxy seems to have undergone a substantial merger in the recent past, young globular clusters are not detected.Comment: 21 pages, latex, postscript figures available at ftp://delphi.umd.edu/pub/outgoing/eshaya/fornax

    Evaluation of Load Transfer in the Cellulosic-Fiber/Polymer Interphase Using a Micro-Raman Tensile Test

    Get PDF
    The objectives of this research were (1) to use a Raman micro-spectroscopic technique to determine the tensile stress distributions of a cellulosic-fiber/polymer droplet interphase, and (2) to examine if the stress profile could be used to evaluate load transfer in fiber/polymer adhesion. Cellulosic fibers were treated with various silanes (amino, phenylamino, phenyl, and octadecyl functionalities) and a styrene-maleic anhydride copolymer to create different interphases upon bonding with polystyrene. A single fiber, bonded with a micro-droplet of polystyrene in the mid-span region of its gage length, was strained in tension. Raman spectra were collected at five-micrometer intervals along the embedded region of the fiber. The stress-dependent peak of cellulose (895 cm-1) was analyzed for frequency shift so that the local tensile stress in the interface region could be determined. Results showed that the local tensile stresses of the strained fiber were lower in the embedded region compared to the exposed region, suggesting a transfer of load from the fiber to the matrix polymer. A deeper and sharper decline of the stress profile was observed when the fiber/droplet interaction was enhanced. Further analyses, involving conversion of tensile stress profiles to shear stress distributions in the interphase, confirmed that the micro-Raman/tensile test can be employed to evaluate fiber/matrix interfacial bonding in composites. This success signifies the possibility of evaluating adhesion between cellulosic fibers and brittle polymers, which is difficult to study using common micromechanical tests. Use of the micro-Raman technique can improve our understanding of wood/polymer adhesion
    • …
    corecore