5 research outputs found

    Generation of Leukaemia-Derived Dendritic Cells (DCleu) to improve anti-leukaemic activity in AML: selection of the most efficient response modifier combinations

    Get PDF
    Dendritic cells (DC) and leukaemia derived DC (DC(leu)) are potent stimulators of anti-leukaemic activity in acute myeloid leukaemia (AML) and can be generated from mononuclear cells in vitro following standard DC/DC(leu)-generating protocols. With respect to future clinical applications though, DC/DC(leu)-generating protocols specifically designed for application in a whole-blood-(WB)-environment must be established. Therefore, we developed ten new DC/DC(leu)-generating protocols (kits; Kit-A/-C/-D/-E/-F/-G/-H/-I/-K/-M) for the generation of DC/DC(leu) from leukaemic WB, containing calcium-ionophore, granulocyte-macrophage-colony-stimulating-factor (GM-CSF), tumour-necrosis-factor-alpha, prostaglandin-E(1) (PGE(1)), prostaglandin-E(2) (PGE(2)) and/or picibanil (OK-432). All protocols were evaluated regarding their performance in generating DC/DC(leu) using refined classification and/or ranking systems; DC/DC(leu) were evaluated regarding their performance in stimulating anti-leukaemic activity using a cytotoxicity fluorolysis assay. Overall, we found the new kits capable to generate (mature) DC/DC(leu) from leukaemic WB. Through refined classification and ranking systems, we were able to select Kit-I (GM-CSF + OK-432), -K (GM-CSF + PGE(2)) and -M (GM-CSF + PGE(1)) as the most efficient kits in generating (mature) DC/DC(leu), which are further competent to stimulate immunoreactive cells to show an improved anti-leukaemic cytotoxicity as well. This great performance of Kit-I, -K and -M in mediating DC/DC(leu)-based anti-leukaemic immunity in a WB-environment in vitro constitutes an important and directive step for translating DC/DC(leu)-based immunotherapy of AML into clinical application

    Dendritic Cell-Triggered Immune Activation Goes along with Provision of (Leukemia-Specific) Integrin Beta 7-Expressing Immune Cells and Improved Antileukemic Processes

    Get PDF
    Integrin beta 7 (β7), a subunit of the integrin receptor, is expressed on the surface of immune cells and mediates cell–cell adhesions and interactions, e.g., antitumor or autoimmune reactions. Here, we analyzed, whether the stimulation of immune cells by dendritic cells (of leukemic derivation in AML patients or of monocyte derivation in healthy donors) leads to increased/leukemia-specific β7 expression in immune cells after T-cell-enriched mixed lymphocyte culture—finally leading to improved antileukemic cytotoxicity. Healthy, as well as AML and MDS patients’ whole blood (WB) was treated with Kit-M (granulocyte–macrophage colony-stimulating factor (GM-CSF) + prostaglandin E1 (PGE1)) or Kit-I (GM-CSF + Picibanil) in order to generate DCs (DCleu or monocyte-derived DC), which were then used as stimulator cells in MLC. To quantify antigen/leukemia-specific/antileukemic functionality, a degranulation assay (DEG), an intracellular cytokine assay (INTCYT) and a cytotoxicity fluorolysis assay (CTX) were used. (Leukemia-specific) cell subtypes were quantified via flow cytometry. The Kit treatment of WB (compared to the control) resulted in the generation of DC/DCleu, which induced increased activation of innate and adaptive cells after MLC. Kit-pretreated WB (vs. the control) led to significantly increased frequencies of β7-expressing T-cells, degranulating and intracellular cytokine-producing β7-expressing immune cells and, in patients’ samples, increased blast lysis. Positive correlations were found between the Kit-M-mediated improvement of blast lysis (vs. the control) and frequencies of β7-expressing T-cells. Our findings indicate that DC-based immune therapies might be able to specifically activate the immune system against blasts going along with increased frequencies of (leukemia-specific) β7-expressing immune cells. Furthermore, β7 might qualify as a predictor for the efficiency and the success of AML and/or MDS therapies
    corecore