242 research outputs found

    Integrability of Lie systems and some of its applications in physics

    Full text link
    The geometric theory of Lie systems will be used to establish integrability conditions for several systems of differential equations, in particular Riccati equations and Ermakov systems. Many different integrability criteria in the literature will be analyzed from this new perspective and some applications in physics will be given.Comment: 16 page

    Shape Invariant potentials depending on n parameters transformed by translation

    Get PDF
    Shape Invariant potentials in the sense of [Gendenshte\"{\i}n L.\'E., JETP Lett. 38, (1983) 356] which depend on more than two parameters are not know to date. In [Cooper F., Ginocchio J.N. and Khare A., Phys. Rev. {\bf 36 D}, (1987) 2458] was posed the problem of finding a class of Shape Invariant potentials which depend on n parameters transformed by translation, but it was not solved. We analyze the problem using some properties of the Riccati equation and we find the general solution.Comment: 19 pages, Latex, iopart.sty, to appear in J. Phys. A: Math. Gen. (2000

    Quantum Lie systems and integrability conditions

    Full text link
    The theory of Lie systems has recently been applied to Quantum Mechanics and additionally some integrability conditions for Lie systems of differential equations have also recently been analysed from a geometric perspective. In this paper we use both developments to obtain a geometric theory of integrability in Quantum Mechanics and we use it to provide a series of non-trivial integrable quantum mechanical models and to recover some known results from our unifying point of view

    Integrability of Lie systems through Riccati equations

    Full text link
    Integrability conditions for Lie systems are related to reduction or transformation processes. We here analyse a geometric method to construct integrability conditions for Riccati equations following these approaches. This approach provides us with a unified geometrical viewpoint that allows us to analyse some previous works on the topic and explain new properties. Moreover, this new approach can be straightforwardly generalised to describe integrability conditions for any Lie system. Finally, we show the usefulness of our treatment in order to study the problem of the linearisability of Riccati equations.Comment: Corrected typo

    Lie systems and integrability conditions for t-dependent frequency harmonic oscillators

    Full text link
    Time-dependent frequency harmonic oscillators (TDFHO's) are studied through the theory of Lie systems. We show that they are related to a certain kind of equations in the Lie group SL(2,R). Some integrability conditions appear as conditions to be able to transform such equations into simpler ones in a very specific way. As a particular application of our results we find t-dependent constants of the motion for certain one-dimensional TDFHO's. Our approach provides an unifying framework which allows us to apply our developments to all Lie systems associated with equations in SL(2,R) and to generalise our methods to study any Lie system
    • …
    corecore