99 research outputs found

    Nondifferentiable Dynamic: Two Examples

    Get PDF
    Some nondifferentiable quantities (for example, the metric signature) can be the independent physical degrees of freedom. It is supposed that in quantum gravity these degrees of freedom can fluctuate. Two examples of such quantum fluctuation are considered: a quantum interchange of the sign of two components of the 5D metric and a quantum fluctuation between Euclidean and Lorentzian metrics. The first case leads to a spin-like structure on the throat of composite wormhole and to a possible inner structure of the string. The second case leads to a quantum birth of the non-singular Euclidean Universe with frozen 5th5^{th} dimension. The probability for such quantum fluctuations is connected with an algorithmical complexity of the Einstein equations.Comment: essential changes: the initial equations in section III are changed, as the consequence the obtained solution describes the quantum birth of the nonsingular Universe with the matter (electromagnetic field=nondiagonal components of the MD metric

    A Renormalization Group Approach to Relativistic Cosmology

    Full text link
    We discuss the averaging hypothesis tacitly assumed in standard cosmology. Our approach is implemented in a "3+1" formalism and invokes the coarse graining arguments, provided and supported by the real-space Renormalization Group (RG) methods. Block variables are introduced and the recursion relations written down explicitly enabling us to characterize the corresponding RG flow. To leading order, the RG flow is provided by the Ricci-Hamilton equations studied in connection with the geometry of three-manifolds. The properties of the Ricci-Hamilton flow make it possible to study a critical behaviour of cosmological models. This criticality is discussed and it is argued that it may be related to the formation of sheet-like structures in the universe. We provide an explicit expression for the renormalized Hubble constant and for the scale dependence of the matter distribution. It is shown that the Hubble constant is affected by non-trivial scale dependent shear terms, while the spatial anisotropy of the metric influences significantly the scale-dependence of the matter distribution.Comment: 57 pages, LaTeX, 15 pictures available on request from the Author

    Note on Signature Change and Colombeau Theory

    Get PDF
    Recent work alludes to various `controversies' associated with signature change in general relativity. As we have argued previously, these are in fact disagreements about the (often unstated) assumptions underlying various possible approaches. The choice between approaches remains open.Comment: REVTex, 3 pages; to appear in GR

    Reply Comment: Comparison of Approaches to Classical Signature Change

    Full text link
    We contrast the two approaches to ``classical" signature change used by Hayward with the one used by us (Hellaby and Dray). There is (as yet) no rigorous derivation of appropriate distributional field equations. Hayward's distributional approach is based on a postulated modified form of the field equations. We make an alternative postulate. We point out an important difference between two possible philosophies of signature change --- ours is strictly classical, while Hayward's Lagrangian approach adopts what amounts to an imaginary proper ``time" on one side of the signature change, as is explicitly done in quantum cosmology. We also explain why we chose to use the Darmois-Israel type junction conditions, rather than the Lichnerowicz type junction conditions favoured by Hayward. We show that the difference in results is entirely explained by the difference in philosophy (imaginary versus real Euclidean ``time"), and not by the difference in approach to junction conditions (Lichnerowicz with specific coordinates versus Darmois with general coordinates).Comment: 10 pages, latex, no figures. Replying to - "Comment on `Failure of Standard Conservation Laws at a Classical Change of Signature'", S.A. Hayward, Phys. Rev. D52, 7331-7332 (1995) (gr-qc/9606045

    Ricci Flow Gravity

    Get PDF
    A theory of gravitation is proposed, modeled after the notion of a Ricci flow. In addition to the metric an independent volume enters as a fundamental geometric structure. Einstein gravity is included as a limiting case. Despite being a scalar-tensor theory the coupling to matter is different from Jordan-Brans-Dicke gravity. In particular there is no adjustable coupling constant. For the solar system the effects of Ricci flow gravity cannot be distinguished from Einstein gravity and therefore it passes all classical tests. However for cosmology significant deviations from standard Einstein cosmology will appear.Comment: 15 pages. V2: improved presentation, in particular Jordan vs. Brans-Dicke and on viability. Added section on physical interpretation. V3: more references. Reworked to agree with published versio

    Averaging procedure in variable-G cosmologies

    Full text link
    Previous work in the literature had built a formalism for spatially averaged equations for the scale factor, giving rise to an averaged Raychaudhuri equation and averaged Hamiltonian constraint, which involve a backreaction source term. The present paper extends these equations to include models with variable Newton parameter and variable cosmological term, motivated by the nonperturbative renormalization program for quantum gravity based upon the Einstein-Hilbert action. We focus on the Brans-Dicke form of the renormalization-group improved action functional. The coupling between backreaction and spatially averaged three-dimensional scalar curvature is found to survive, and a variable-G cosmic quintet is found to emerge. Interestingly, under suitable assumptions, an approximate solution can be found where the early universe tends to a FLRW model, while keeping track of the original inhomogeneities through three effective fluids. The resulting qualitative picture is that of a universe consisting of baryons only, while inhomogeneities average out to give rise to the full dark-side phenomenology.Comment: 20 pages. In the new version, all original calculations have been improved, and the presentation has been further improved as wel

    Quantum states of elementary three-geometry

    Get PDF
    We introduce a quantum volume operator KK in three--dimensional Quantum Gravity by taking into account a symmetrical coupling scheme of three SU(2) angular momenta. The spectrum of KK is discrete and defines a complete set of eigenvectors which is alternative with respect to the complete sets employed when the usual binary coupling schemes of angular momenta are considered. Each of these states, that we call quantum bubbles, represents an interference of extended configurations which provides a rigorous meaning to the heuristic notion of quantum tetrahedron. We study the generalized recoupling coefficients connecting the symmetrical and the binary basis vectors, and provide an explicit recursive solution for such coefficients by analyzing also its asymptotic limit.Comment: 15 pages, LaTe

    How is the local-scale gravitational instability influenced by the surrounding large-scale structure formation?

    Get PDF
    We develop the formalism to investigate the relation between the evolution of the large-scale (quasi) linear structure and that of the small-scale nonlinear structure in Newtonian cosmology within the Lagrangian framework. In doing so, we first derive the standard Friedmann expansion law using the averaging procedure over the present horizon scale. Then the large-scale (quasi) linear flow is defined by averaging the full trajectory field over a large-scale domain, but much smaller than the horizon scale. The rest of the full trajectory field is supposed to describe small-scale nonlinear dynamics. We obtain the evolution equations for the large-scale and small-scale parts of the trajectory field. These are coupled to each other in most general situations. It is shown that if the shear deformation of fluid elements is ignored in the averaged large-scale dynamics, the small-scale dynamics is described by Newtonian dynamics in an effective Friedmann-Robertson-Walker (FRW) background with a local scale factor. The local scale factor is defined by the sum of the global scale factor and the expansion deformation of the averaged large-scale displacement field. This means that the evolution of small-scale fluctuations is influenced by the surrounding large-scale structure through the modification of FRW scale factor. The effect might play an important role in the structure formation scenario. Furthermore, it is argued that the so-called {\it optimized} or {\it truncated} Lagrangian perturbation theory is a good approximation in investigating the large-scale structure formation up to the quasi nonlinear regime, even when the small-scale fluctuations are in the non-linear regime.Comment: 15pages, Accepted for publication in Gravitation and General Relativit

    Averaging in Cosmology

    Get PDF
    In this paper we discuss the effect of local inhomogeneities on the global expansion of nearly FLRW universes, in a perturbative setting. We derive a generic linearized averaging operation for metric perturbations from basic assumptions, and we explicify the issue of gauge invariance. We derive a gauge invariant expression for the back-reaction of density inhomogeneities on the global expansion of perturbed FLRW spacetimes, in terms of observable quantities, and we calculate the effect quantitatively. Since we do not adopt a comoving gauge, our result incorporates the back-reaction on the metric due to scalar velocity and vorticity perturbations. The results are compared with the results by other authors in this field.Comment: 24 pages, Latex, accepted for publication in Phys. Rev.
    • …
    corecore