2 research outputs found

    Cyclin E overexpression sensitizes triple negative breast cancer to Wee1 kinase Inhibition

    Get PDF
    Purpose: Poor prognosis in triple-negative breast cancer (TNBC) is due to an aggressive phenotype and lack of biomarker-driven targeted therapies. Overexpression of cyclin E and phosphorylated-CDK2 are correlated with poor survival in TNBC patients, and the absence of CDK2 desensitizes cells to inhibition of Wee1 kinase, a key cell cycle regulator. We hypothesize that cyclin E expression can predict response to therapies, which include the Wee1 kinase inhibitor, AZD1775. Experimental Design: Mono and combination therapies with AZD1775 were evaluated in TNBC cell lines and multiple patient derived xenograft (PDX) models with different cyclin E expression profiles. The mechanism(s) of cyclin E-mediated replicative stress were investigated following cyclin E induction or CRISPR/Cas9 knockout by a number of assays in multiple cells lines. Results: Cyclin E overexpression (1) is enriched in TNBCs with high recurrence rates, (2) sensitizes TNBC cell lines and PDX models to AZD1775, (3) leads to CDK2-dependent activation of DNA replication stress pathways and (4) increases Wee1 kinase activity. Moreover, treatment of cells with either CDK2 inhibitors or carboplatin leads to transient transcriptional induction of cyclin E (in cyclin E-low tumors) and result in DNA replicative stress. Such drug mediated cyclin E induction in TNBC cells and PDX models sensitizes them to AZD1775 in a sequential treatment combination strategy. Conclusions: Cyclin E is a potential biomarker of response (1) for AZD1775 as monotherapy in cyclin E high TNBC tumors and (2) for sequential combination therapy with CDK2 inhibitor or carboplatin followed by AZD1775 in cyclin E low TNBC tumors
    corecore