115 research outputs found

    Uplifted supersymmetric Higgs region

    Full text link
    We show that the parameter space of the Minimal Supersymmetric Standard Model includes a region where the down-type fermion masses are generated by the loop-induced couplings to the up-type Higgs doublet. In this region the down-type Higgs doublet does not acquire a vacuum expectation value at tree level, and has sizable couplings in the superpotential to the tau leptons and bottom quarks. Besides a light standard-like Higgs boson, the Higgs spectrum includes the nearly degenerate states of a heavy spin-0 doublet which can be produced through their couplings to the bb quark and decay predominantly into \tau^+\tau^- or \tau\nu.Comment: 14 pages; Signs in Eqns. (3.1) and (4.2) corrected, appendix include

    Probing the MSSM Higgs Sector at an e-e- Collider

    Get PDF
    The theoretical structure of the Higgs sector of the Minimal Supersymmetric Standard Model (MSSM) is briefly described. An outline of Higgs phenomenology at future lepton colliders is presented, and some opportunities for probing the physics of the MSSM Higgs sector at an e-e- collider are considered.Comment: 14 pages, needs e-e-ijmpa.sty and psfig.sty, to appear in the Proceedings of e-e- 97, International Journal of Modern Physics A, Special Proceedings Issue, June 199

    Complete two-loop effective potential approximation to the lightest Higgs scalar boson mass in supersymmetry

    Get PDF
    I present a method for accurately calculating the pole mass of the lightest Higgs scalar boson in supersymmetric extensions of the Standard Model, using a mass-independent renormalization scheme. The Higgs scalar self-energies are approximated by supplementing the exact one-loop results with the second derivatives of the complete two-loop effective potential in Landau gauge. I discuss the dependence of this approximation on the choice of renormalization scale, and note the existence of particularly poor choices which fortunately can be easily identified and avoided. For typical input parameters, the variation in the calculated Higgs mass over a wide range of renormalization scales is found to be of order a few hundred MeV or less, and is significantly improved over previous approximations.Comment: 5 pages, 1 figure. References added, sample test model parameters listed, minor wording change

    Loop effects and non-decoupling property of SUSY QCD in gbtHg b\to tH^{-}

    Get PDF
    One-loop SUSY QCD radiative correction to gbtHgb \to tH^{-} cross section is calculated in the Minimal Supersymmetric Standard Model. We found that SUSY QCD is non-decoupling if the gluino mass and the parameter μ\mu, AtA_t or AbA_b are at the same order and get large. The non-decoupling contribution can be enhanced by large tanβ\tan\beta and therefore large corrections to the hadronic production rates at the Tevatron and LHC are expected in the large tanβ\tan\beta limit. The fundamental reason for such non-decoupling behavior is found to be some couplings in the loops being proportional to SUSY mass parameters.Comment: 15 pages, 5 PS figures. A proof of non-decouplings of SUSY-QCD, Comments on corresponding QCD correction and references adde

    Higgs-boson production associated with a bottom quark at hadron colliders with SUSY-QCD corrections

    Full text link
    The Higgs boson production p p (p\bar p) -> b h +X via b g -> b h at the LHC, which may be an important channel for testing the bottom quark Yukawa coupling, is subject to large supersymmetric quantum corrections. In this work the one-loop SUSY-QCD corrections to this process are evaluated and are found to be quite sizable in some parameter space. We also study the behavior of the corrections in the limit of heavy SUSY masses and find the remnant effects of SUSY-QCD. These remnant effects, which are left over in the Higgs sector by the heavy sparticles, are found to be so sizable (for a light CP-odd Higgs and large \tan\beta) that they might be observable in the future LHC experiment. The exploration of such remnant effects is important for probing SUSY, especially in case that the sparticles are too heavy (above TeV) to be directly discovered at the LHC.Comment: Results for the Tevatron adde

    Exact One Loop Running Couplings in the Standard Model

    Full text link
    Taking the dominant couplings in the standard model to be the quartic scalar coupling, the Yukawa coupling of the top quark, and the SU(3) gauge coupling, we consider their associated running couplings to one loop order. Despite the non-linear nature of the differential equations governing these functions, we show that they can be solved exactly. The nature of these solutions is discussed and their singularity structure is examined. It is shown that for a sufficiently small Higgs mass, the quartic scalar coupling decreases with increasing energy scale and becomes negative, indicative of vacuum instability. This behavior changes for a Higgs mass greater than 168 GeV, beyond which this couplant increases with increasing energy scales and becomes singular prior to the ultraviolet (UV) pole of the Yukawa coupling. Upper and lower bounds on the Higgs mass corresponding to new physics at the TeV scale are obtained and compare favourably with the numerical results of the one-loop and two-loop analyses with inclusion of electroweak couplings.Comment: 5 pages, LaTeX, additional references and further discussion in this version. Accepted for publication in Canadian Journal of Physic

    Dark Matter, Light Stops and Electroweak Baryogenesis

    Full text link
    We examine the neutralino relic density in the presence of a light top squark, such as the one required for the realization of the electroweak baryogenesis mechanism, within the minimal supersymmetric standard model. We show that there are three clearly distinguishable regions of parameter space, where the relic density is consistent with WMAP and other cosmological data. These regions are characterized by annihilation cross sections mediated by either light Higgs bosons, Z bosons, or by the co-annihilation with the lightest stop. Tevatron collider experiments can test the presence of the light stop in most of the parameter space. In the co-annihilation region, however, the mass difference between the light stop and the lightest neutralino varies between 15 and 30 GeV, presenting an interesting challenge for stop searches at hadron colliders. We present the prospects for direct detection of dark matter, which provides a complementary way of testing this scenario. We also derive the required structure of the high energy soft supersymmetry breaking mass parameters where the neutralino is a dark matter candidate and the stop spectrum is consistent with electroweak baryogenesis and the present bounds on the lightest Higgs mass.Comment: 24 pages, 8 figures; version published in Phys.Rev.

    Top-Down Approach to Unified Supergravity Models

    Full text link
    We introduce a new approach for studying unified supergravity models. In this approach all the parameters of the grand unified theory (GUT) are fixed by imposing the corresponding number of low energy observables. This determines the remaining particle spectrum whose dependence on the low energy observables can now be investigated. We also include some SUSY threshold corrections that have previously been neglected. In particular the SUSY threshold corrections to the fermion masses can have a significant impact on the Yukawa coupling unification.Comment: 19 pages, uuencoded compressed ps file, DESY 94-057 (paper format corrected

    Top-squark searches at the Tevatron in models of low-energy supersymmetry breaking

    Get PDF
    We study the production and decays of top squarks (stops) at the Tevatron collider in models of low-energy supersymmetry breaking. We consider the case where the lightest Standard Model (SM) superpartner is a light neutralino that predominantly decays into a photon and a light gravitino. Considering the lighter stop to be the next-to-lightest Standard Model superpartner, we analyze stop signatures associated with jets, photons and missing energy, which lead to signals naturally larger than the associated SM backgrounds. We consider both 2-body and 3-body decays of the top squarks and show that the reach of the Tevatron can be significantly larger than that expected within either the standard supergravity models or models of low-energy supersymmetry breaking in which the stop is the lightest SM superpartner. For a modest projection of the final Tevatron luminosity, L = 4 fb-1, stop masses of order 300 GeV are accessible at the Tevatron collider in both 2-body and 3-body decay modes. We also consider the production and decay of ten degenerate squarks that are the supersymmetric partners of the five light quarks. In this case we find that common squark masses up to 360 GeV are easily accessible at the Tevatron collider, and that the reach increases further if the gluino is light.Comment: 32 pages, 9 figures; references adde

    Effects of the supersymmetric phases on the neutral Higgs sector

    Get PDF
    By using the effective potential approximation and taking into account the dominant top quark and scalar top quark loops, radiative corrections to MSSM Higgs potential are computed in the presence of the supersymmetric CP-violating phases. It is found that, the lightest Higgs scalar remains essentially CP-even as in the CP-invariant theory whereas the other two scalars are heavy and do not have definite CP properties. The supersymmetric CP-violating phases are shown to modify significantly the decay rates of the scalars to fermion pairs.Comment: 24 pp, 8 figs, 2 tables, typos and errors correcte
    corecore