1,975 research outputs found

    Critical Exponents near a Random Fractal Boundary

    Full text link
    The critical behaviour of correlation functions near a boundary is modified from that in the bulk. When the boundary is smooth this is known to be characterised by the surface scaling dimension \xt. We consider the case when the boundary is a random fractal, specifically a self-avoiding walk or the frontier of a Brownian walk, in two dimensions, and show that the boundary scaling behaviour of the correlation function is characterised by a set of multifractal boundary exponents, given exactly by conformal invariance arguments to be \lambda_n = 1/48 (\sqrt{1+24n\xt}+11)(\sqrt{1+24n\xt}-1). This result may be interpreted in terms of a scale-dependent distribution of opening angles α\alpha of the fractal boundary: on short distance scales these are sharply peaked around α=π/3\alpha=\pi/3. Similar arguments give the multifractal exponents for the case of coupling to a quenched random bulk geometry.Comment: 13 pages. Comments on relation to results in quenched random bulk added, and on relation to other recent work. Typos correcte

    The Number of Incipient Spanning Clusters in Two-Dimensional Percolation

    Full text link
    Using methods of conformal field theory, we conjecture an exact form for the probability that n distinct clusters span a large rectangle or open cylinder of aspect ratio k, in the limit when k is large.Comment: 9 pages, LaTeX, 1 eps figure. Additional references and comparison with existing numerical results include

    Time-dependence of correlation functions following a quantum quench

    Full text link
    We show that the time-dependence of correlation functions in an extended quantum system in d dimensions, which is prepared in the ground state of some hamiltonian and then evolves without dissipation according to some other hamiltonian, may be extracted using methods of boundary critical phenomena in d+1 dimensions. For d=1 particularly powerful results are available using conformal field theory. These are checked against those available from solvable models. They may be explained in terms of a picture, valid more generally, whereby quasiparticles, entangled over regions of the order of the correlation length in the initial state, then propagate classically through the system.Comment: 4+ pages, Corrected Typo

    Critical Percolation in Finite Geometries

    Full text link
    The methods of conformal field theory are used to compute the crossing probabilities between segments of the boundary of a compact two-dimensional region at the percolation threshold. These probabilities are shown to be invariant not only under changes of scale, but also under mappings of the region which are conformal in the interior and continuous on the boundary. This is a larger invariance than that expected for generic critical systems. Specific predictions are presented for the crossing probability between opposite sides of a rectangle, and are compared with recent numerical work. The agreement is excellent.Comment: 10 page

    Holographic Entropy on the Brane in de Sitter Schwarzschild Space

    Get PDF
    The relationship between the entropy of de Sitter (dS) Schwarzschild space and that of the CFT, which lives on the brane, is discussed by using Friedmann-Robertson-Walker (FRW) equations and Cardy-Verlinde formula. The cosmological constant appears on the brane with time-like metric in dS Schwarzschild background. On the other hand, in case of the brane with space-like metric in dS Schwarzschild background, the cosmological constant of the brane does not appear because we can choose brane tension to cancel it. We show that when the brane crosses the horizon of dS Schwarzschild black hole, both for time-like and space-like cases, the entropy of the CFT exactly agrees with the black hole entropy of 5-dimensional AdS Schwarzschild background as it happens in the AdS/CFT correspondence.Comment: 8 pages, LaTeX, Referneces adde

    Critical behaviour in parabolic geometries

    Full text link
    We study two-dimensional systems with boundary curves described by power laws. Using conformal mappings we obtain the correlations at the bulk critical point. Three different classes of behaviour are found and explained by scaling arguments which also apply to higher dimensions. For an Ising system of parabolic shape the behaviour of the order at the tip is also found.Comment: Old paper, for archiving. 6 pages, 1 figure, epsf, IOP macr

    Field Theory of Branching and Annihilating Random Walks

    Full text link
    We develop a systematic analytic approach to the problem of branching and annihilating random walks, equivalent to the diffusion-limited reaction processes 2A->0 and A->(m+1)A, where m>=1. Starting from the master equation, a field-theoretic representation of the problem is derived, and fluctuation effects are taken into account via diagrammatic and renormalization group methods. For d>2, the mean-field rate equation, which predicts an active phase as soon as the branching process is switched on, applies qualitatively for both even and odd m, but the behavior in lower dimensions is shown to be quite different for these two cases. For even m, and d~2, the active phase still appears immediately, but with non-trivial crossover exponents which we compute in an expansion in eps=2-d, and with logarithmic corrections in d=2. However, there exists a second critical dimension d_c'~4/3 below which a non-trivial inactive phase emerges, with asymptotic behavior characteristic of the pure annihilation process. This is confirmed by an exact calculation in d=1. The subsequent transition to the active phase, which represents a new non-trivial dynamic universality class, is then investigated within a truncated loop expansion. For odd m, we show that the fluctuations of the annihilation process are strong enough to create a non-trivial inactive phase for all d<=2. In this case, the transition to the active phase is in the directed percolation universality class.Comment: 39 pages, LaTex, 10 figures included as eps-files; submitted to J. Stat. Phys; slightly revised versio

    Morphogen Gradient from a Noisy Source

    Full text link
    We investigate the effect of time-dependent noise on the shape of a morphogen gradient in a developing embryo. Perturbation theory is used to calculate the deviations from deterministic behavior in a simple reaction-diffusion model of robust gradient formation, and the results are confirmed by numerical simulation. It is shown that such deviations can disrupt robustness for sufficiently high noise levels, and the implications of these findings for more complex models of gradient-shaping pathways are discussed.Comment: Four pages, three figure

    Fermionic field theory for directed percolation in (1+1) dimensions

    Full text link
    We formulate directed percolation in (1+1) dimensions in the language of a reaction-diffusion process with exclusion taking place in one space dimension. We map the master equation that describes the dynamics of the system onto a quantum spin chain problem. From there we build an interacting fermionic field theory of a new type. We study the resulting theory using renormalization group techniques. This yields numerical estimates for the critical exponents and provides a new alternative analytic systematic procedure to study low-dimensional directed percolation.Comment: 20 pages, 2 figure

    PERFORMANCE MEASURES: BANDWIDTH VERSUS FIDELITY IN PERFORMANCE MANAGEMENT

    Get PDF
    Performance is of focal and critical interest in organizations. Despite its criticality, when it comes to human performance there are many questions as to how to best measure and manage performance. One such issue is the breadth of the performance that should be considered. In this paper, we examine the issue of the breadth of performance in terms of measuring and managing performance. Overall, a contingency approach is taken in which the expected benefits and preference for broad or narrow performance measures depend on the type of job (fixed or changeable).bandwidth, fidelity in performance management, performance measures
    • …
    corecore