54 research outputs found

    Theory of the nodal nematic quantum phase transition in superconductors

    Get PDF
    We study the character of an Ising nematic quantum phase transition (QPT) deep inside a d-wave superconducting state with nodal quasiparticles in a two-dimensional tetragonal crystal. We find that, within a 1/N expansion, the transition is continuous. To leading order in 1/N, quantum fluctuations enhance the dispersion anisotropy of the nodal excitations, and cause strong scattering which critically broadens the quasiparticle (qp) peaks in the spectral function, except in a narrow wedge in momentum space near the Fermi surface where the qp's remain sharp. We also consider the possible existence of a nematic glass phase in the presence of weak disorder. Some possible implications for cuprate physics are also discussed.Comment: 9 page, 4 figures, an error in one of expressions corrected and a new author was added. New references and footnotes are added and this is the version to appear in PR

    The Regge Limit for Green Functions in Conformal Field Theory

    Full text link
    We define a Regge limit for off-shell Green functions in quantum field theory, and study it in the particular case of conformal field theories (CFT). Our limit differs from that defined in arXiv:0801.3002, the latter being only a particular corner of the Regge regime. By studying the limit for free CFTs, we are able to reproduce the Low-Nussinov, BFKL approach to the pomeron at weak coupling. The dominance of Feynman graphs where only two high momentum lines are exchanged in the t-channel, follows simply from the free field analysis. We can then define the BFKL kernel in terms of the two point function of a simple light-like bilocal operator. We also include a brief discussion of the gravity dual predictions for the Regge limit at strong coupling.Comment: 23 pages 2 figures, v2: Clarification of relation of the Regge limit defined here and previous work in CFT. Clarification of causal orderings in the limit. References adde

    Is Our Universe Natural?

    Full text link
    It goes without saying that we are stuck with the universe we have. Nevertheless, we would like to go beyond simply describing our observed universe, and try to understand why it is that way rather than some other way. Physicists and cosmologists have been exploring increasingly ambitious ideas that attempt to explain why certain features of our universe aren't as surprising as they might first appear.Comment: Invited review for Nature, 11 page

    Holographic c-theorems in arbitrary dimensions

    Full text link
    We re-examine holographic versions of the c-theorem and entanglement entropy in the context of higher curvature gravity and the AdS/CFT correspondence. We select the gravity theories by tuning the gravitational couplings to eliminate non-unitary operators in the boundary theory and demonstrate that all of these theories obey a holographic c-theorem. In cases where the dual CFT is even-dimensional, we show that the quantity that flows is the central charge associated with the A-type trace anomaly. Here, unlike in conventional holographic constructions with Einstein gravity, we are able to distinguish this quantity from other central charges or the leading coefficient in the entropy density of a thermal bath. In general, we are also able to identify this quantity with the coefficient of a universal contribution to the entanglement entropy in a particular construction. Our results suggest that these coefficients appearing in entanglement entropy play the role of central charges in odd-dimensional CFT's. We conjecture a new c-theorem on the space of odd-dimensional field theories, which extends Cardy's proposal for even dimensions. Beyond holography, we were able to show that for any even-dimensional CFT, the universal coefficient appearing the entanglement entropy which we calculate is precisely the A-type central charge.Comment: 62 pages, 4 figures, few typo's correcte

    The expression of Gli3, regulated by HOXD13, may play a role in idiopathic congenital talipes equinovarus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Idiopathic congenital talipes equinovarus (ICTEV) is a congenital limb deformity. Based on extended transmission disequilibrium testing, <it>Gli-Kruppel family member 3 </it>(<it>Gli3</it>) has been identified as a candidate gene for ICTEV. Here, we verify the role of <it>Gli3 </it>in ICTEV development.</p> <p>Methods</p> <p>Using the rat ICTEV model, we analyzed the differences in <it>Gli3 </it>expression levels between model rats and normal control rats. We used luciferase reporter gene assays and ChIP/EMSA assays to analyze the regulatory elements of <it>Gli3</it>.</p> <p>Results</p> <p><it>Gli3 </it>showed higher expression levels in ICTEV model rats compared to controls (P < 0.05). We identified repressor and activator regions in the rat <it>Gli3 </it>promoter. The <it>Gli3 </it>promoter also contains two putative Hoxd13 binding sites. Using EMSA, the Hoxd13 binding site 2 was found to directly interact with Hoxd13 <it>in vitro</it>. ChIP assays of the Hoxd13-<it>Gli3 </it>promoter complex from a developing limb confirmed that endogenous Hoxd13 interacts with this region <it>in vivo</it>.</p> <p>Conclusion</p> <p>Our findings suggest that <it>HoxD13 </it>directly interacts with the promoter of <it>Gli3</it>. The increase of <it>Gli3 </it>expression in ICTEV model animal might result from the low expression of <it>HoxD13</it>.</p

    Limits of JT gravity

    Get PDF
    We construct various limits of JT gravity, including Newton-Cartan and Carrollian versions of dilaton gravity in two dimensions as well as a theory on the three-dimensional light cone. In the BF formulation our boundary conditions relate boundary connection with boundary scalar, yielding as boundary action the particle action on a group manifold or some Hamiltonian reduction thereof. After recovering in our formulation the Schwarzian for JT, we show that AdS-Carroll gravity yields a twisted warped boundary action. We comment on numerous applications and generalizations.Comment: 41 pages, 3 figures, 1 table; v2: Matches published version + Footnote 11; v3: Corrected typo in Carrollian/Galilean generalized dilaton potentia

    Holographic Entanglement Entropy in Lovelock Gravities

    Get PDF
    We study entanglement entropies of simply connected surfaces in field theories dual to Lovelock gravities. We consider Gauss-Bonnet and cubic Lovelock gravities in detail. In the conformal case the logarithmic terms in the entanglement entropy are governed by the conformal anomalies of the CFT; we verify that the holographic calculations are consistent with this property. We also compute the holographic entanglement entropy of a slab in the Gauss-Bonnet examples dual to relativistic and non-relativistic CFTs and discuss its properties. Finally, we discuss features of the entanglement entropy in the backgrounds dual to renormalization group flows between fixed points and comment on the implications for a possible c-theorem in four spacetime dimensions.Comment: harvmac, 30 pages, 1 figure, References added, typos correcte
    corecore