180 research outputs found
Planck intermediate results. VIII. Filaments between interacting clusters
About half of the baryons of the Universe are expected to be in the form of
filaments of hot and low density intergalactic medium. Most of these baryons
remain undetected even by the most advanced X-ray observatories which are
limited in sensitivity to the diffuse low density medium. The Planck satellite
has provided hundreds of detections of the hot gas in clusters of galaxies via
the thermal Sunyaev-Zel'dovich (tSZ) effect and is an ideal instrument for
studying extended low density media through the tSZ effect. In this paper we
use the Planck data to search for signatures of a fraction of these missing
baryons between pairs of galaxy clusters. Cluster pairs are good candidates for
searching for the hotter and denser phase of the intergalactic medium (which is
more easily observed through the SZ effect). Using an X-ray catalogue of
clusters and the Planck data, we select physical pairs of clusters as
candidates. Using the Planck data we construct a local map of the tSZ effect
centered on each pair of galaxy clusters. ROSAT data is used to construct X-ray
maps of these pairs. After having modelled and subtracted the tSZ effect and
X-ray emission for each cluster in the pair we study the residuals on both the
SZ and X-ray maps. For the merging cluster pair A399-A401 we observe a
significant tSZ effect signal in the intercluster region beyond the virial
radii of the clusters. A joint X-ray SZ analysis allows us to constrain the
temperature and density of this intercluster medium. We obtain a temperature of
kT = 7.1 +- 0.9, keV (consistent with previous estimates) and a baryon density
of (3.7 +- 0.2)x10^-4, cm^-3. The Planck satellite mission has provided the
first SZ detection of the hot and diffuse intercluster gas.Comment: Accepted by A&
Resident Cellular Components of the Human Lung Current Knowledge and Goals for Research on Cell Phenotyping and Function
The purpose of the workshop was to identify still obscure or novel cellular components of the lung, to determine cell function in lung development and in health that impacts on disease, and to decide promising avenues for future research to extract and phenotype these cells. Since robust technologies are now available to identify, sort, purify, culture, and phenotype cells, progress is now within sight to unravel the origins and functional capabilities of lung cells in developmental stages and in disease. The Workshop's agenda was to first discuss the lung's embryologic development, including progenitor and stem cells, and then assess the functional and structural cells in three main compartments of the lung: (1) airway cells in bronchial and bronchiolar epithelium and bronchial glands (basal, secretory, ciliated, Clara, and neuroendocrine cells); (2) alveolar unit cells (Type 1 cells, Type 2 cells, and fibroblasts in the interstitium); and (3) pulmonary vascular cells (endothelial cells from different vascular structures, smooth muscle cells, and adventitial fibroblasts). The main recommendations were to: (1) characterize with better cell markers, both surface and nonsurface, the various cells within the lung, including progenitor cells and stem cells; (2) obtain more knowledge about gene expression in specific cell types in health and disease, which will provide insights into biological and pathologic processes; (3) develop more methodologies for cell culture, isolation, sorting, co-culture, and immortalization; and (4) promote tissue banks to facilitate the procurement of tissue from normal and from diseased lung for analysis at all levels
Morfometria do aparelho genital e resposta superovulatĂłria de coelhas suplementadas com geleia real
Planck early results IX : XMM-Newton follow-up for validation of Planck cluster candidates
Peer reviewe
Planck early results. X. Statistical analysis of Sunyaev-Zeldovich scaling relations for X-ray galaxy clusters
All-sky data from the Planck survey and the Meta-Catalogue of X-ray detected Clusters of galaxies (MCXC) are combined to investigate the relationship between the thermal Sunyaev-Zeldovich (SZ) signal and X-ray luminosity. The sample comprises similar to 1600 X-ray clusters with redshifts up to similar to 1 and spans a wide range in X-ray luminosity. The SZ signal is extracted for each object individually, and the statistical significance of the measurement is maximised by averaging the SZ signal in bins of X-ray luminosity, total mass, or redshift. The SZ signal is detected at very high significance over more than two decades in X-ray luminosity (10(43) erg s(-1) less than or similar to L500E(z)(-7/3) less than or similar to 2 x 10(45) erg s(-1)). The relation between intrinsic SZ signal and X-ray luminosity is investigated and the measured SZ signal is compared to values predicted from X-ray data. Planck measurements and X-ray based predictions are found to be in excellent agreement over the whole explored luminosity range. No significant deviation from standard evolution of the scaling relations is detected. For the first time the intrinsic scatter in the scaling relation between SZ signal and X-ray luminosity is measured and found to be consistent with the one in the luminosity - mass relation from X-ray studies. There is no evidence of any deficit in SZ signal strength in Planck data relative to expectations from the X-ray properties of clusters, underlining the robustness and consistency of our overall view of intra-cluster medium properties
- âŠ