70 research outputs found

    Site and gender specificity of inheritance of bone mineral density

    No full text
    Differences in genetic control of BMD by skeletal sites and genders were examined by complex segregation analysis in 816 members of 147 families with probands with extreme low BMD. Spine BMD correlated more strongly in male-male comparisons and hip BMD in female-female comparisons, consistent with gender- and site-specificity of BMD heritability

    The IBD6 Crohn's disease locus demonstrates complex interactions with CARD15 and IBD5 disease-associated variants.

    No full text
    Genetic studies in inflammatory bowel disease have identified multiple susceptibility loci, whose relevance depends critically on verification in independent cohorts. Genetic variants associated with Crohn's disease have now been identified on chromosomes 5 (IBD5/5q31 risk haplotype) and 16 (IBD1 locus, CARD15/NOD2 mutations). Stratification of genome-wide linkage analyses by disease associated variants is now possible, offering both increased power for identification of other loci and improved understanding of genetic mechanisms. We performed a genome-wide scan of 137 Crohn's disease affected relative pairs from 112 families. Multipoint non-parametric linkage analyses were performed, with further stratification of affection status by common CARD15 mutations and the IBD5 haplotype. We verified linkage of Crohn's disease to regions on chromosome 3 (P=0.0009) and X (P=0.001) in our cohort. Linkage to chromosome 16 (IBD1) was observed in Crohn's disease pairs not possessing common CARD15 mutations (P=0.0007), approximately 25 cM q telomeric of CARD15. Evidence for linkage to chromosome 19 (IBD6) was observed in Crohn's disease pairs not possessing CARD15 mutations (P=0.0001), and in pairs possessing one or two copies of the IBD5 risk haplotype (P=0.0005), with significant evidence for genetic heterogeneity and epistasis, respectively. These analyses demonstrate the complex genetic basis to Crohn's disease, and show that the discovery of disease-causing variants may be used to aid identification of further susceptibility loci in complex disease

    Inflammatory bowel disease is associated with a TNF polymorphism that affects an interaction between the OCT1 and NF(-kappa)B transcription factors.

    No full text
    Tumour necrosis factor-alpha (TNF) expression is increased in inflammatory bowel disease (IBD), and TNF maps to the IBD3 susceptibility locus. Transmission disequilibrium and case-control analyses, in two independent Caucasian cohorts, showed a novel association of the TNF(-857C) promoter polymorphism with IBD (overall P=0.001 in 587 IBD families). Further genetic associations of TNF(-857C) with IBD sub-phenotypes were seen for ulcerative colitis and for Crohn's disease, but only in patients not carrying common NOD2 mutations. The genetic data suggest a recessive model of inheritance, and we observed ex vivo lipopolysaccharide-stimulated whole-blood TNF production to be higher in healthy TNF(-857C) homozygotes. We show the transcription factor OCT1 binds TNF(-857T) but not TNF(-857C), and interacts in vitro and in vivo with the pro-inflammatory NF(-kappa)B transcription factor p65 subunit at an adjacent binding site. Detailed functional analyses of these interactions in gut macrophages, in addition to further genetic mapping of this gene-dense region, will be critical to understand the significance of the observed association of TNF(-857C) with IBD
    • …
    corecore