138 research outputs found
Gut microbes and metabolites as modulators of blood-brain barrier integrity and brain health
The human gastrointestinal (gut) microbiota comprises diverse and dynamic populations of bacteria, archaea, viruses, fungi, and protozoa, coexisting in a mutualistic relationship with the host. When intestinal homeostasis is perturbed, the function of the gastrointestinal tract and other organ systems, including the brain, can be compromised. The gut microbiota is proposed to contribute to blood-brain barrier disruption and the pathogenesis of neurodegenerative diseases. While progress is being made, a better understanding of interactions between gut microbes and host cells, and the impact these have on signaling from gut to brain is now required. In this review, we summarise current evidence of the impact gut microbes and their metabolites have on blood-brain barrier integrity and brain function, and the communication networks between the gastrointestinal tract and brain, which they may modulate. We also discuss the potential of microbiota modulation strategies as therapeutic tools for promoting and restoring brain health
Complete Genome Sequence of Bacteroides ovatus V975
The complete genome sequence of Bacteroides ovatus V975 was determined. The genome consists of a single circular chromosome of 6,475,296 bp containing five rRNA operons, 68 tRNA genes, and 4,959 coding genes
In Silico Analysis of the Small Molecule Content of Outer Membrane Vesicles Produced by Bacteroides thetaiotaomicron Indicates an Extensive Metabolic Link between Microbe and Host
The interactions between the gut microbiota and its host are of central importance to the health of the host. Outer membrane vesicles (OMVs) are produced ubiquitously by Gram-negative bacteria including the gut commensal Bacteroides thetaiotaomicron. These vesicles can interact with the host in various ways but until now their complement of small molecules has not been investigated in this context. Using an untargeted high-coverage metabolomic approach we have measured the small molecule content of these vesicles in contrasting in vitro conditions to establish what role these metabolites could perform when packed into these vesicles. B. thetaiotaomicron packs OMVs with a highly conserved core set of small molecules which are strikingly enriched with mouse-digestible metabolites and with metabolites previously shown to be associated with colonization of the murine GIT. By use of an expanded genome-scale metabolic model of B. thetaiotaomicron and a potential host (the mouse) we have established many possible metabolic pathways between the two organisms that were previously unknown, and have found several putative novel metabolic functions for mouse that are supported by gene annotations, but that do not currently appear in existing mouse metabolic networks. The lipidome of these OMVs bears no relation to the mouse lipidome, so the purpose of this particular composition of lipids remains unclear. We conclude from this analysis that through intimate symbiotic evolution OMVs produced by B. thetaiotaomicron are likely to have been adopted as a conduit for small molecules bound for the mammalian host in vivo
Cephalosporinases associated with outer membrane vesicles released by Bacteroides spp. protect gut pathogens and commensals against beta-lactam antibiotics
Objectives: To identify β-lactamase genes in gut commensal Bacteroides species and to assess the impact of these enzymes, when carried by outer membrane vesicles (OMVs), in protecting enteric pathogens and commensals. Methods: A deletion mutant of the putative class A β-lactamase gene (locus tag BT_4507) found in the genome of the human commensal Bacteroides thetaiotaomicron was constructed and a phenotypic analysis performed. A phylogenetic tree was built from an alignment of nine Bacteroides cephalosporinase protein sequences, using the maximum likelihood method. The rate of cefotaxime degradation after incubation with OMVs produced by different Bacteroides species was quantified using a disc susceptibility test. The resistance of Salmonella Typhimurium and Bifidobacterium breve to cefotaxime in liquid culture in the presence of B. thetaiotaomicron OMVs was evaluated by measuring bacterial growth. Results: The B. thetaiotaomicron BT_4507 gene encodes a β-lactamase related to the CepA cephalosporinase of Bacteroides fragilis. OMVs produced by B. thetaiotaomicron and several other Bacteroides species, except Bacteroides ovatus, carried surface-associated β-lactamases that could degrade cefotaxime. β-Lactamase-harbouring OMVs from B. thetaiotaomicron protected Salmonella Typhimurium and B. breve from an otherwise lethal dose of cefotaxime. Conclusions: The production of membrane vesicles carrying surface-associated β-lactamases by Bacteroides species, which constitute a major part of the human colonic microbiota, may protect commensal bacteria and enteric pathogens, such as Salmonella Typhimurium, against β-lactam antibiotics
Use of genetically modified bacteria for drug delivery in humans: Revisiting the safety aspect
The use of live, genetically modified bacteria as delivery vehicles for biologics is of considerable interest scientifically and has attracted significant commercial investment. We have pioneered the use of the commensal gut bacterium Bacteroides ovatus for the oral delivery of therapeutics to the gastrointestinal tract. Here we report on our investigations of the biological safety of engineered B. ovatus bacteria that includes the use of thymineless death as a containment strategy and the potential for the spread of transgenes in vivo in the mammalian gastrointestinal tract. We demonstrate the ability of GM-strains of Bacteroides to survive thymine starvation and overcome it through the exchange of genetic material. We also provide evidence for horizontal gene transfer in the mammalian gastrointestinal tract resulting in transgene-carrying wild type bacteria. These findings sound a strong note of caution on the employment of live genetically modified bacteria for the delivery of biologics
Flavonoids from engineered tomatoes inhibit gut barrier pro-inflammatory cytokines and chemokines, via SAPK/JNK and p38 MAPK pathways
Flavonoids are a diverse group of plant secondary metabolites, known to reduce inflammatory bowel disease symptoms. How they achieve this is largely unknown. Our study focuses on the gut epithelium as it receives high topological doses of dietary constituents, maintains gut homeostasis, and orchestrates gut immunity. Dysregulation leads to chronic gut inflammation, via dendritic cell (DC)-driven immune responses. Tomatoes engineered for enriched sets of flavonoids (anthocyanins or flavonols) provided a unique and complex naturally consumed food matrix to study the effect of diet on chronic inflammation. Primary murine colonic epithelial cell-based inflammation assays consist of chemokine induction, apoptosis and proliferation, and effects on kinase pathways. Primary murine leukocytes and DCs were used to assay effects on transmigration. A murine intestinal cell line was used to assay wound healing. Engineered tomato extracts (enriched in anthocyanins or flavonols) showed strong and specific inhibitory effects on a set of key epithelial pro-inflammatory cytokines and chemokines. Chemotaxis assays showed a resulting reduction in the migration of primary leukocytes and DCs. Activation of epithelial cell SAPK/JNK and p38 MAPK signaling pathways were specifically inhibited. The epithelial wound healing-associated STAT3 pathway was unaffected. Cellular migration, proliferation, and apoptosis assays confirmed that wound healing processes were not affected by flavonoids. We show flavonoids target epithelial pro-inflammatory kinase pathways, inhibiting chemotactic signals resulting in reduced leukocyte and DC chemotaxis. Thus, both anthocyanins and flavonols modulate epithelial cells to become hyporesponsive to bacterial stimulation. Our results identify a viable mechanism to explain the in vivo anti-inflammatory effects of flavonoids
Does the microbiome and virome contribute to myalgic encephalomyelitis/chronic fatigue syndrome?
Myalgic encephalomyelitis (ME)/chronic fatigue syndrome (CFS) (ME/CFS) is a disabling and debilitating disease of unknown aetiology. It is a heterogeneous disease characterized by various inflammatory, immune, viral, neurological and endocrine symptoms. Several microbiome studies have described alterations in the bacterial component of the microbiome (dysbiosis) consistent with a possible role in disease development. However, in focusing on the bacterial components of the microbiome, these studies have neglected the viral constituent known as the virome. Viruses, particularly those infecting bacteria (bacteriophages), have the potential to alter the function and structure of the microbiome via gene transfer and host lysis. Viral-induced microbiome changes can directly and indirectly influence host health and disease. The contribution of viruses towards disease pathogenesis is therefore an important area for research in ME/CFS. Recent advancements in sequencing technology and bioinformatics now allow more comprehensive and inclusive investigations of human microbiomes. However, as the number of microbiome studies increases, the need for greater consistency in study design and analysis also increases. Comparisons between different ME/CFS microbiome studies are difficult because of differences in patient selection and diagnosis criteria, sample processing, genome sequencing and downstream bioinformatics analysis. It is therefore important that microbiome studies adopt robust, reproducible and consistent study design to enable more reliable and valid comparisons and conclusions to be made between studies. This article provides a comprehensive review of the current evidence supporting microbiome alterations in ME/CFS patients. Additionally, the pitfalls and challenges associated with microbiome studies are discussed
Complete Genome Sequence of a Bacteroides fragilis Bacteriophage, vB_BfrS_NCTC
Bacteroides fragilis is an obligate anaerobe and a common gut commensal bacterium that is also an important opportunistic pathogen. Here, we present the complete genome sequence of the circularly permuted B. fragilis bacteriophage vB_BfrS_NCTC. It comprises 47,160bp, with 69 open reading frames
Regulated expression and function of CD122 (interleukin-2/interleukin-15R-β) during lymphoid development
To determine whether signaling via CD122 (interleukin-2 [IL-2]/IL-15 receptor β-chain) plays a role in regulating the expansion and differentiation of lymphocyte precursors, we have characterized its expression and evaluated its ability to influence the activity of developing lymphoid cells. A significant fraction of Sca1^+Lin^- hematopoietic stem cells in day 12 fetal liver were found to be CD122^+. CD122-mRNA^+ and IL-2-mRNA^+ cells were also localized in embryo sections within pharyngeal blood vessels adjacent to and surrounding the thymic analgen. This distribution is consistent with the migration of CD122^+ progenitor cells from the liver to the developing thymus where a majority of Sca1^+ intrathymic T-cell progenitors were CD122^+. Analysis of CD122 expression in the day 12 fetal liver revealed that the majority of B220^+ cells were CD122^+. Furthermore, CD122 expression was restricted to the earliest B220^+ cells (CD43^+CD24^-; prepro B cells; fraction A) that proliferate vigorously to IL-2 in the absence of any stromal cells, but not to IL-15. Consistent with a role for the IL-2/IL- 2R pathway in lymphocyte development is the progressive loss of B cells seen in IL-2-deficient mice. Together, these observations suggest that CD122 plays a role in regulating normal lymphocyte development in vivo
- …