31 research outputs found
Relationship between the cathodoluminescence emission and resistivity in In doped CdZnTe crystals
Cadmium zinc telluride, CdZnTe, bulk single crystals doped with 1019 at./cm3 of indium in the initial melt were grown by vertical Bridgman technique. The samples were investigated by energy dispersive spectroscopy, cathodoluminiscence (CL), and current-voltage behavior at room temperature. The results shows that Cd and Te vacancy concentration depend on the indium and zinc concentrations. CL measurements indicate a relationship between radiative centers associated to Cd and Te vacancies and resistivity values
New approaches in order to enlarge the grain size of bulk CdZnTe (CZT) crystals
For the few decades, II-VI compound semiconductors are gaining attention because of its numerous applications in the field of detector technology, photovoltaic, nuclear medicine, astronomy etc. In the recent past, materials scientists focused their attention for the growth of CdTe/CdZnTe single crystals because it doesn\u27t require any specialized cooling and detects higher energy photos as in comparison with the existing Ge, Si and Hgl(2) detectors. In the present study, we are going to discuss five main approaches in order to get good quality CZT crystal and we have successfully grown the CZT crystal by adopting these approaches. They are: i) oscillatory Bridgman technique previous to the growth process, ii) modifying the thermal environments in a Bridgman geometry using a Pt tube as a cold finger in order to reduce the growth velocity iii) growth from the vapour phase using Bridgman geometry with a pyrolitic boron nitride (PBN) crucible to locate the feed material, and with a special temperature profile, iv) microgravity experiments in the FOTON M3 mission using magnetic field prior to the growth process and v) growth by a boron oxide encapsulation. The detailed discussions are given in the following sections
Researching COVID to enhance recovery (RECOVER) pregnancy study: Rationale, objectives and design
Importance Pregnancy induces unique physiologic changes to the immune response and hormonal changes leading to plausible differences in the risk of developing post-acute sequelae of SARS-CoV-2 (PASC), or Long COVID. Exposure to SARS-CoV-2 during pregnancy may also have long-term ramifications for exposed offspring, and it is critical to evaluate the health outcomes of exposed children. The National Institutes of Health (NIH) Researching COVID to Enhance Recovery (RECOVER) Multi-site Observational Study of PASC aims to evaluate the long-term sequelae of SARS-CoV-2 infection in various populations. RECOVER-Pregnancy was designed specifically to address long-term outcomes in maternal-child dyads. Methods RECOVER-Pregnancy cohort is a combined prospective and retrospective cohort that proposes to enroll 2,300 individuals with a pregnancy during the COVID-19 pandemic and their offspring exposed and unexposed in utero, including single and multiple gestations. Enrollment will occur both in person at 27 sites through the Eunice Kennedy Shriver National Institutes of Health Maternal-Fetal Medicine Units Network and remotely through national recruitment by the study team at the University of California San Francisco (UCSF). Adults with and without SARS-CoV-2 infection during pregnancy are eligible for enrollment in the pregnancy cohort and will follow the protocol for RECOVER-Adult including validated screening tools, laboratory analyses and symptom questionnaires followed by more in-depth phenotyping of PASC on a subset of the overall cohort. Offspring exposed and unexposed in utero to SARS-CoV-2 maternal infection will undergo screening tests for neurodevelopment and other health outcomes at 12, 18, 24, 36 and 48 months of age. Blood specimens will be collected at 24 months of age for SARS-CoV-2 antibody testing, storage and anticipated later analyses proposed by RECOVER and other investigators. Discussion RECOVER-Pregnancy will address whether having SARS-CoV-2 during pregnancy modifies the risk factors, prevalence, and phenotype of PASC. The pregnancy cohort will also establish whether there are increased risks of adverse long-term outcomes among children exposed in utero
Impact of Optimized Breastfeeding on the Costs of Necrotizing Enterocolitis in Extremely Low Birthweight Infants
To estimate risk of NEC for ELBW infants as a function of preterm formula and maternal milk (MM) intake and calculate the impact of suboptimal feeding on NEC incidence and costs
New approaches in order to enlarge the grain size of bulk CdZnTe (CZT) crystals
For the few decades, II-VI compound semiconductors are gaining attention because of its numerous applications in the field of detector technology, photovoltaic, nuclear medicine, astronomy etc. In the recent past, materials scientists focused their attention for the growth of CdTe/CdZnTe single crystals because it doesn’t require any specialized cooling and detects higher energy photos as in comparison with the existing Ge, Si and HgI2 detectors. In the present study, we are going to discuss five main approaches in order to get good quality CZT crystal and we have successfully grown the CZT crystal by adopting these approaches. They are: i) oscillatory Bridgman technique previous to the growth process, ii) modifying the thermal environments in a Bridgman geometry using a Pt tube as a cold finger in order to reduce the growth velocity iii)
growth from the vapour phase using Bridgman geometry with a pyrolitic boron nitride (PBN) crucible to locate the feed
material, and with a special temperature profile, iv) microgravity experiments in the FOTON M3 mission using magnetic field prior to the growth process and v) growth by a boron oxide encapsulation. The detailed discussions are given in the following sections
Growth of Bi doped cadmium zinc telluride single crystals by Bridgman oscillation method and its structural, optical, and electrical analyses
The II-VI compound semiconductor cadmium zinc telluride (CZT) is very useful for room temperature radiation detection applications. In the present research, we have successfully grown Bi doped CZT single crystals with two different zinc concentrations (8 and 14 at. %) by the Bridgman oscillation method, in which one experiment has been carried out with a platinum (Pt) tube as the ampoule support. Pt also acts as a cold finger and reduces the growth velocity and enhances crystalline perfection. The grown single crystals have been studied with different analysis methods. The stoichiometry was confirmed by energy dispersive by x-ray and inductively coupled plasma mass spectroscopy analyses and it was found there is no incorporation of impurities in the grown crystal. The presence of Cd and Te vacancies was determined by cathodoluminescence studies. Electrical properties were assessed by I-V analysis and indicated higher resistive value (8.53 x 10_8 Ω cm) for the crystal grown with higher zinc concentration (with Cd excess) compare to the other (3.71 x 10_5 Ω cm)
Development of CdZnTe doped with Bi for gamma radiation detection
Bulk CZT crystals doped with Bi (1 x 10(19) at/cm(3)) have been grown by the Oscillatory Bridgman method, the growth velocity and the zinc concentration profile being improved by the insertion of a Pt tube acting as a cold finger. The stoichiometric uniformity was examined by energy dispersive X-ray analysis, and the zinc concentration was confirmed by inductively coupled plasma mass spectroscopy and cathodoluminescence measurements. The resistivity value was in the range of 8 x 10(8) Omega cm , being smaller for the passivated sample, which at the same time had counter device properties