35 research outputs found
SEMI – CLOSED HAT (SC-HAT) POWER CYCLE
This new power cycle is derived from a simplified HAT cycle, with a partial recirculation of the exhaust gases added with respect to the traditional HAT configuration. The basic idea of applying recirculation to the HAT cycle stems from the interesting performance levels and general environmental advantages obtainable applying this technique to combined-cycle (SCGT/CC) and regenerative GT solutions (SCGT/RE); these power plants all share the integration with CO2 chemical scrubbing of the exhaust stack in order to reduce greenhouse effects.
A relevant advantage of the proposed configuration over the original HAT solution is the possibility of complete water recovery from the separator before the recirculation node; here the temperature level is necessarily very low, allowing thus condensation of water produced by the natural-gas combustion process. This allows the self–sustainement of the HAT cycle, from the water consumption point of view, without any external supply. For the water separator, two thermodynamic models were developed (respectively simulating a single- and a multiple temperature condensation process), which have provided similar results.
The whole cycle is modeled using a modular code, thoroughly tested against the performance of a large set of existing GTs. The layout is derived from an existing HAT configuration, with suppression of the economizer section in the regenerator and the possible practice of external (non-recuperative) intercooling between the two compressors. The first choice is imposed by the presence of an additional low-temperature heat load for the CO2 removal plant, while the second is sometimes necessary depending on the compressor pressure ratios and the possibility of including inside the cycle low-temperature internal cycle regeneration.
The expected performance of the plant is relatively high and close to those typical of HAT, SCGT/RE and SCGT/CC cycles: a LHV-based efficiency level exceeding 50% inclusive of CO2 separation and delivery at ambient pressure and temperature; the specific work levels — in the range of 680 kJ/kg for the basic configuration — are lower than those of the HAT cycle but larger than for SCGT/CC and SCGT/RE solutions; the cycle requires relatively high overall pressure ratios (35–40). A notable improvement in specific work can be obtained with reheat.</jats:p
Off-design performances of an organic Rankine cycle for waste heat recovery from gas turbines
This paper presents an off-design analysis of a gas turbine Organic Rankine Cycle (ORC) combined cycle. Combustion turbine performances are significantly affected by fluctuations in ambient conditions, leading to relevant variations in the exhaust gases’ mass flow rate and temperature. The effects of the variation of ambient air temperature have been considered in the simulation of the topper cycle and of the condenser in the bottomer one. Analyses have been performed for different working fluids (toluene, benzene and cyclopentane) and control systems have been introduced on critical parameters, such as oil temperature and air mass flow rate at the condenser fan. Results have highlighted similar power outputs for cycles based on benzene and toluene, while differences as high as 34% have been found for cyclopentane. The power output trend with ambient temperature has been found to be influenced by slope discontinuities in gas turbine exhaust mass flow rate and temperature and by the upper limit imposed on the air mass flow rate at the condenser as well, suggesting the importance of a correct sizing of the component in the design phase. Overall, benzene-based cycle power output has been found to vary between 4518 kW and 3346 kW in the ambient air temperature range considered
The potential of simulating energy systems: The multi energy systems simulator model
Energy system modelling is an essential practice to assist a set of heterogeneous stakeholders in the process of defining an effective and efficient energy transition. From the analysis of a set of open-source energy system models, it emerged that most models employ an approach directed at finding the optimal solution for a given set of constraints. On the contrary, a simulation model is a representation of a system used to reproduce and understand its behaviour under given conditions without seeking an optimal solution. In this paper, a new open-source energy system model is presented. Multi Energy Systems Simulator (MESS) is a modular, multi-energy carrier, multi-node model that allows the investigation of non optimal solutions by simulating an energy system. The model was built for urban level analyses. However, each node can represent larger regions allowing wider spatial scales to be represented as well. In this work, the tool’s features are presented through a comparison between MESS and Calliope, a state of the art optimization model, to analyse and highlight the differences between the two approaches, the potentialities of a simulation tool and possible areas for further development. The two models produced coherent results, showing differences that were tracked down to the different approaches. Based on the comparison conducted, general conclusions were drawn on the potential of simulating energy systems in terms of a more realistic description of smaller energy systems, lower computational times and increased opportunity for participatory processes in planning urban energy systems