423 research outputs found
El proceso de construcción del arco mediterráneo : una calle de doble dirección
Francesc Carbonell i Josep Báguena, analitzen el procés de construcció de l'Arc Mediterrani com a contrapès a la influència que exerceixen els territoris septentrionales d'Europa; un procés de doble direcció perquè neix al mateix temps de la Comissió Europea i de les regions mediterrànies, amb l'objectiu de consensuar polítiques clau en àmbits suprarregionals. Una d'aquestes polítiques és sense dubte la del transport i infraestructures, i aquest tema apareix en tots els articles d'aquest número de Papers
Effects of Cyclodextrin Type on Vitamin C, Antioxidant Activity, and Sensory Attributes of a Mandarin Juice Enriched with Pomegranate and Goji Berries
The effects of the addition of cyclodextrins (CDs), β-CD, or HP-β-CD (1%), on the protection of antioxidant
compounds of mandarin juices enriched with pomegranate extract and goji berries juice, was studied. Juices were prepared and after their thermal treatment (98 ◦C, 30 s) they were stored at 4 ◦C during 75 d. Vitamin C content, CIE L∗a∗b∗ color, antioxidant capacity, retinol equivalents, and sensory properties were studied. Losses on vitamin C were higher (6%) for juices with β-CD than juices with HP-β-CD. Retinol equivalents degradation was lower (3.4%) in juices with HP-β-cyclodextrins than in those treated with β-CD. Lower losses were observed for the instrumental and sensory color intensity in juices with HP-β-CD addition. Finally, the antioxidant capacity was also higher in juices treated with HP-β-CD. Finally, the overall sensory quality of juices with HP-β-CD was the best one after 30 d of cold storage. Even though β-CD addition did not cause any improvement compared with control juice (without CD addition), the benefits of adding HP-β-CD to this particular juice were shown in almost all parameters under study.Ciencias de la Alimentació
Vigencia de un legado culinario
Libro reseñado: Cartagena de Indias en la olla. Teresita Román de Zurek. Editorial Antares, Bogotá, 1968, 527 pp., il
Vigencia de un legado culinario
Libro reseñado: Cartagena de Indias en la olla. Teresita Román de Zurek. Editorial Antares, Bogotá, 1968, 527 pp., il
Multi-targeting of viral RNAs with synthetic trans-acting small interfering RNAs enhances plant antiviral resistance
[EN] RNA interference (RNAi)-based tools are used in multiple organisms to induce antiviral resistance through the sequence-specific degradation of target RNAs by complementary small RNAs. In plants, highly specific antiviral RNAi-based tools include artificial microRNAs (amiRNAs) and synthetic trans-acting small interfering RNAs (syn-tasiRNAs). syn-tasiRNAs have emerged as a promising antiviral tool allowing for the multi-targeting of viral RNAs through the simultaneous expression of several syn-tasiRNAs from a single precursor. Here, we compared in tomato plants the effects of an amiRNA construct expressing a single amiRNA and a syn-tasiRNA construct expressing four different syn-tasiRNAs against Tomato spotted wilt virus (TSWV), an economically important pathogen affecting tomato crops worldwide. Most of the syn-tasiRNA lines were resistant to TSWV, whereas the majority of the amiRNA lines were susceptible and accumulated viral progenies with mutations in the amiRNA target site. Only the two amiRNA lines with higher amiRNA accumulation were resistant, whereas resistance in syn-tasiRNA lines was not exclusive of lines with high syn-tasiRNA accumulation. Collectively, these results suggest that syn-tasiRNAs induce enhanced antiviral resistance because of the combined silencing effect of each individual syn-tasiRNA, which minimizes the possibility that the virus simultaneously mutates all different target sites to fully escape each syn-tasiRNA.We thank V. Aragones and E. Moya for invaluable technical assistance. This work was supported by grants from Ministerio de Ciencia, Innovacion y Universidades (MCIU, Spain), Agencia Estatal de Investigacion (AEI, Spain) and Fondo Europeo de Desarrollo Regional (FEDER, European Union) (RTI2018-095118-A-100 and RYC-2017-21648 to A.C.; BIO2017-83184-R to J.-A.D.).Carbonell, A.; Lisón, P.; Daròs, J. (2019). Multi-targeting of viral RNAs with synthetic trans-acting small interfering RNAs enhances plant antiviral resistance. The Plant Journal. 100(4):720-737. https://doi.org/10.1111/tpj.14466S7207371004Ai, T., Zhang, L., Gao, Z., Zhu, C. X., & Guo, X. (2011). Highly efficient virus resistance mediated by artificial microRNAs that target the suppressor of PVX and PVY in plants. Plant Biology, 13(2), 304-316. doi:10.1111/j.1438-8677.2010.00374.xAli, Z., Ali, S., Tashkandi, M., Zaidi, S. S.-A., & Mahfouz, M. M. (2016). CRISPR/Cas9-Mediated Immunity to Geminiviruses: Differential Interference and Evasion. Scientific Reports, 6(1). doi:10.1038/srep26912Berkhout, B., & Das, A. T. (2012). HIV-1 Escape From RNAi Antivirals: Yet Another Houdini Action? Molecular Therapy - Nucleic Acids, 1, e26. doi:10.1038/mtna.2012.22Bishop, K. N., Holmes, R. K., Sheehy, A. M., & Malim, M. H. (2004). APOBEC-Mediated Editing of Viral RNA. Science, 305(5684), 645-645. doi:10.1126/science.1100658Ter Brake, O., Konstantinova, P., Ceylan, M., & Berkhout, B. (2006). Silencing of HIV-1 with RNA Interference: a Multiple shRNA Approach. Molecular Therapy, 14(6), 883-892. doi:10.1016/j.ymthe.2006.07.007Brodersen, P., Sakvarelidze-Achard, L., Bruun-Rasmussen, M., Dunoyer, P., Yamamoto, Y. Y., Sieburth, L., & Voinnet, O. (2008). Widespread Translational Inhibition by Plant miRNAs and siRNAs. Science, 320(5880), 1185-1190. doi:10.1126/science.1159151Carbonell, A. (2017). Artificial small RNA-based strategies for effective and specific gene silencing in plants. Plant gene silencing: mechanisms and applications, 110-127. doi:10.1079/9781780647678.0110Carbonell, A. (2019). Design and High-Throughput Generation of Artificial Small RNA Constructs for Plants. Plant MicroRNAs, 247-260. doi:10.1007/978-1-4939-9042-9_19Carbonell, A. (2019). Secondary Small Interfering RNA-Based Silencing Tools in Plants: An Update. Frontiers in Plant Science, 10. doi:10.3389/fpls.2019.00687Carbonell, A., & Daròs, J.-A. (2017). Artificial microRNAs and synthetictrans-acting small interfering RNAs interfere with viroid infection. Molecular Plant Pathology, 18(5), 746-753. doi:10.1111/mpp.12529Carbonell, A., & Daròs, J.-A. (2019). Design, Synthesis, and Functional Analysis of Highly Specific Artificial Small RNAs with Antiviral Activity in Plants. Antiviral Resistance in Plants, 231-246. doi:10.1007/978-1-4939-9635-3_13Carbonell, A., Takeda, A., Fahlgren, N., Johnson, S. C., Cuperus, J. T., & Carrington, J. C. (2014). New Generation of Artificial MicroRNA and Synthetic Trans-Acting Small Interfering RNA Vectors for Efficient Gene Silencing in Arabidopsis. Plant Physiology, 165(1), 15-29. doi:10.1104/pp.113.234989Carbonell, A., Fahlgren, N., Mitchell, S., Cox, K. L., Reilly, K. C., Mockler, T. C., & Carrington, J. C. (2015). Highly specific gene silencing in a monocot species by artificial micro
RNA
s derived from chimeric
mi
RNA
precursors. The Plant Journal, 82(6), 1061-1075. doi:10.1111/tpj.12835Carbonell, A., López, C., & Daròs, J.-A. (2019). Fast-Forward Identification of Highly Effective Artificial Small RNAs Against Different Tomato spotted wilt virus Isolates. Molecular Plant-Microbe Interactions®, 32(2), 142-156. doi:10.1094/mpmi-05-18-0117-taBhushan, K. (2018). CRISPR/Cas13a targeting of RNA virus in plants. Plant Cell Reports, 37(12), 1707-1712. doi:10.1007/s00299-018-2297-2Chen, L., Cheng, X., Cai, J., Zhan, L., Wu, X., Liu, Q., & Wu, X. (2016). Multiple virus resistance using artificial trans-acting siRNAs. Journal of Virological Methods, 228, 16-20. doi:10.1016/j.jviromet.2015.11.004Cullen, B. R. (2006). Role and Mechanism of Action of the APOBEC3 Family of Antiretroviral Resistance Factors. Journal of Virology, 80(3), 1067-1076. doi:10.1128/jvi.80.3.1067-1076.2006Cuperus, J. T., Carbonell, A., Fahlgren, N., Garcia-Ruiz, H., Burke, R. T., Takeda, A., … Carrington, J. C. (2010). Unique functionality of 22-nt miRNAs in triggering RDR6-dependent siRNA biogenesis from target transcripts in Arabidopsis. Nature Structural & Molecular Biology, 17(8), 997-1003. doi:10.1038/nsmb.1866Debreczeni, D. E., López, C., Aramburu, J., Darós, J. A., Soler, S., Galipienso, L., … Rubio, L. (2015). Complete sequence of three different biotypes of tomato spotted wilt virus (wild type, tomato Sw-5 resistance-breaking and pepper Tsw resistance-breaking) from Spain. Archives of Virology, 160(8), 2117-2123. doi:10.1007/s00705-015-2453-8Ding, S.-W. (2010). RNA-based antiviral immunity. Nature Reviews Immunology, 10(9), 632-644. doi:10.1038/nri2824Von Eije, K. J., Brake, O. ter, & Berkhout, B. (2008). Human Immunodeficiency Virus Type 1 Escape Is Restricted When Conserved Genome Sequences Are Targeted by RNA Interference. Journal of Virology, 82(6), 2895-2903. doi:10.1128/jvi.02035-07Ellul, P., Garcia-Sogo, B., Pineda, B., Ríos, G., Roig, L., & Moreno, V. (2003). The ploidy level of transgenic plants in Agrobacterium-mediated transformation of tomato cotyledons (Lycopersicon esculentum L.Mill.) is genotype and procedure dependent. Theoretical and Applied Genetics, 106(2), 231-238. doi:10.1007/s00122-002-0928-yFahim, M., Millar, A. A., Wood, C. C., & Larkin, P. J. (2011). Resistance to Wheat streak mosaic virus generated by expression of an artificial polycistronic microRNA in wheat. Plant Biotechnology Journal, 10(2), 150-163. doi:10.1111/j.1467-7652.2011.00647.xFahlgren, N., & Carrington, J. C. (2009). miRNA Target Prediction in Plants. Plant MicroRNAs, 51-57. doi:10.1007/978-1-60327-005-2_4Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., & Mello, C. C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391(6669), 806-811. doi:10.1038/35888Gitlin, L., Stone, J. K., & Andino, R. (2005). Poliovirus Escape from RNA Interference: Short Interfering RNA-Target Recognition and Implications for Therapeutic Approaches. Journal of Virology, 79(2), 1027-1035. doi:10.1128/jvi.79.2.1027-1035.2005Khan, M. Z., Amin, I., Hameed, A., & Mansoor, S. (2018). CRISPR–Cas13a: Prospects for Plant Virus Resistance. Trends in Biotechnology, 36(12), 1207-1210. doi:10.1016/j.tibtech.2018.05.005Khan, M. Z., Haider, S., Mansoor, S., & Amin, I. (2019). Targeting Plant ssDNA Viruses with Engineered Miniature CRISPR-Cas14a. Trends in Biotechnology, 37(8), 800-804. doi:10.1016/j.tibtech.2019.03.015Kis, A., Tholt, G., Ivanics, M., Várallyay, É., Jenes, B., & Havelda, Z. (2015). Polycistronic artificial miRNA-mediated resistance toWheat dwarf virusin barley is highly efficient at low temperature. Molecular Plant Pathology, 17(3), 427-437. doi:10.1111/mpp.12291KUNG, Y.-J., LIN, S.-S., HUANG, Y.-L., CHEN, T.-C., HARISH, S. S., CHUA, N.-H., & YEH, S.-D. (2011). Multiple artificial microRNAs targeting conserved motifs of the replicase gene confer robust transgenic resistance to negative-sense single-stranded RNA plant virus. Molecular Plant Pathology, 13(3), 303-317. doi:10.1111/j.1364-3703.2011.00747.xLafforgue, G., Martinez, F., Sardanyes, J., de la Iglesia, F., Niu, Q.-W., Lin, S.-S., … Elena, S. F. (2011). Tempo and Mode of Plant RNA Virus Escape from RNA Interference-Mediated Resistance. Journal of Virology, 85(19), 9686-9695. doi:10.1128/jvi.05326-11Lafforgue, G., Martinez, F., Niu, Q.-W., Chua, N.-H., Daros, J.-A., & Elena, S. F. (2013). Improving the Effectiveness of Artificial MicroRNA (amiR)-Mediated Resistance against Turnip Mosaic Virus by Combining Two amiRs or by Targeting Highly Conserved Viral Genomic Regions. Journal of Virology, 87(14), 8254-8256. doi:10.1128/jvi.00914-13Levanova, A., & Poranen, M. M. (2018). RNA Interference as a Prospective Tool for the Control of Human Viral Infections. Frontiers in Microbiology, 9. doi:10.3389/fmicb.2018.02151Lin, S.-S., Wu, H.-W., Elena, S. F., Chen, K.-C., Niu, Q.-W., Yeh, S.-D., … Chua, N.-H. (2009). Molecular Evolution of a Viral Non-Coding Sequence under the Selective Pressure of amiRNA-Mediated Silencing. PLoS Pathogens, 5(2), e1000312. doi:10.1371/journal.ppat.1000312Liu, Q., Wang, F., & Axtell, M. J. (2014). Analysis of Complementarity Requirements for Plant MicroRNA Targeting Using a Nicotiana benthamiana Quantitative Transient Assay
. The Plant Cell, 26(2), 741-753. doi:10.1105/tpc.113.120972Llave, C., Xie, Z., Kasschau, K. D., & Carrington, J. C. (2002). Cleavage of
Scarecrow-like
mRNA Targets Directed by a Class of
Arabidopsis
miRNA. Science, 297(5589), 2053-2056. doi:10.1126/science.1076311Mahas, A., & Mahfouz, M. (2018). Engineering virus resistance via CRISPR–Cas systems. Current Opinion in Virology, 32, 1-8. doi:10.1016/j.coviro.2018.06.002Martínez, F., Lafforgue, G., Morelli, M. J., González-Candelas, F., Chua, N.-H., Daròs, J.-A., & Elena, S. F. (2012). Ultradeep Sequencing Analysis of Population Dynamics of Virus Escape Mutants in RNAi-Mediated Resistant Plants. Molecular Biology and Evolution, 29(11), 3297-3307. doi:10.1093/molbev/mss135Mehta, D., Stürchler, A., Anjanappa, R. B., Zaidi, S. S.-A., Hirsch-Hoffmann, M., Gruissem, W., & Vanderschuren, H. (2019). Linking CRISPR-Cas9 interference in cassava to the evolution of editing-resistant geminiviruses. Genome Biology, 20(1). doi:10.1186/s13059-019-1678-3Mitter, N., Zhai, Y., Bai, A. X., Chua, K., Eid, S., Constantin, M., … Pappu, H. R. (2016). Evaluation and identification of candidate genes for artificial microRNA-mediated resistance to tomato spotted wilt virus. Virus Research, 211, 151-158. doi:10.1016/j.virusres.2015.10.003Montgomery, T. A., Howell, M. D., Cuperus, J. T., Li, D., Hansen, J. E., Alexander, A. L., … Carrington, J. C. (2008). Specificity of ARGONAUTE7-miR390 Interaction and Dual Functionality in TAS3 Trans-Acting siRNA Formation. Cell, 133(1), 128-141. doi:10.1016/j.cell.2008.02.033Montgomery, T. A., Yoo, S. J., Fahlgren, N., Gilbert, S. D., Howell, M. D., Sullivan, C. M., … Carrington, J. C. (2008). AGO1-miR173 complex initiates phased siRNA formation in plants. Proceedings of the National Academy of Sciences, 105(51), 20055-20062. doi:10.1073/pnas.0810241105Nishitsuji, H., Kohara, M., Kannagi, M., & Masuda, T. (2006). Effective Suppression of Human Immunodeficiency Virus Type 1 through a Combination of Short- or Long-Hairpin RNAs Targeting Essential Sequences for Retroviral Integration. Journal of Virology, 80(15), 7658-7666. doi:10.1128/jvi.00078-06Niu, Q.-W., Lin, S.-S., Reyes, J. L., Chen, K.-C., Wu, H.-W., Yeh, S.-D., & Chua, N.-H. (2006). Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nature Biotechnology, 24(11), 1420-1428. doi:10.1038/nbt1255Presloid, J., & Novella, I. (2015). RNA Viruses and RNAi: Quasispecies Implications for Viral Escape. Viruses, 7(6), 3226-3240. doi:10.3390/v7062768Qu, J., Ye, J., & Fang, R. (2007). Artificial MicroRNA-Mediated Virus Resistance in Plants. Journal of Virology, 81(12), 6690-6699. doi:10.1128/jvi.02457-06SCHOLTHOF, K.-B. G., ADKINS, S., CZOSNEK, H., PALUKAITIS, P., JACQUOT, E., HOHN, T., … FOSTER, G. D. (2011). Top 10 plant viruses in molecular plant pathology. Molecular Plant Pathology, 12(9), 938-954. doi:10.1111/j.1364-3703.2011.00752.xSchwab, R., Palatnik, J. F., Riester, M., Schommer, C., Schmid, M., & Weigel, D. (2005). Specific Effects of MicroRNAs on the Plant Transcriptome. Developmental Cell, 8(4), 517-527. doi:10.1016/j.devcel.2005.01.018Shah, P. S., Pham, N. P., & Schaffer, D. V. (2012). HIV Develops Indirect Cross-resistance to Combinatorial RNAi Targeting Two Distinct and Spatially Distant Sites. Molecular Therapy, 20(4), 840-848. doi:10.1038/mt.2012.3Simón-Mateo, C., & García, J. A. (2006). MicroRNA-Guided Processing Impairs
Plum Pox Virus
Replication, but the Virus Readily Evolves To Escape This Silencing Mechanism. Journal of Virology, 80(5), 2429-2436. doi:10.1128/jvi.80.5.2429-2436.2006Tashkandi, M., Ali, Z., Aljedaani, F., Shami, A., & Mahfouz, M. M. (2018). Engineering resistance against Tomato yellow leaf curl virus via the CRISPR/Cas9 system in tomato. Plant Signaling & Behavior, 13(10), e1525996. doi:10.1080/15592324.2018.1525996Turina, M., Kormelink, R., & Resende, R. O. (2016). Resistance to Tospoviruses in Vegetable Crops: Epidemiological and Molecular Aspects. Annual Review of Phytopathology, 54(1), 347-371. doi:10.1146/annurev-phyto-080615-095843Wang, G., Zhao, N., Berkhout, B., & Das, A. T. (2016). CRISPR-Cas9 Can Inhibit HIV-1 Replication but NHEJ Repair Facilitates Virus Escape. Molecular Therapy, 24(3), 522-526. doi:10.1038/mt.2016.24Wang, Z., Pan, Q., Gendron, P., Zhu, W., Guo, F., Cen, S., … Liang, C. (2016). CRISPR/Cas9-Derived Mutations Both Inhibit HIV-1 Replication and Accelerate Viral Escape. Cell Reports, 15(3), 481-489. doi:10.1016/j.celrep.2016.03.042Yoder, K. E., & Bundschuh, R. (2016). Host Double Strand Break Repair Generates HIV-1 Strains Resistant to CRISPR/Cas9. Scientific Reports, 6(1). doi:10.1038/srep29530Zhang, Z. J. (2014). Artificial trans-acting small interfering RNA: a tool for plant biology study and crop improvements. Planta, 239(6), 1139-1146. doi:10.1007/s00425-014-2054-
Time-motion analysis in professional championships of Valencian handball
Valencian handball is a sport with long tradition in the eastern coast of Spain. Among different variants of the game, this study has been focused in the professional version, also known as escala i corda. The aim was to determine the time distribution of periods of active play and rest time during matches. The variables studied were the total duration of the matches, games and game actions, differentiating real or active playing time from passive or rest time. We also quantified the number of games and the number of motor actions per match and per game in top professional competitions (Professional Escala i Corda Leagues and Cups, 2008-2011). Duration of an escala i corda match was between 57 min 43 s and 1 h 53 min 15 s, while the duration of active time was between 25 min 5 s and 50 min 46 s. The number of games per match varied between 11 and 17, and these had a mean duration of 4 min 35 s of active playing time. There are significant differences (p<0.05) in the duration of games, specifically between the three first periods (1-3, 4-6 and 7-9). Meanwhile, the mean time spent on the completion of each rally was 17.61 s ± 1.78 s. An improved understanding of players' absolute and actual game time can provide valuable information for planning specific escala i corda training exercises with respect to the duration and number of rallies
Analysis of the internal load in training women’s futsal of first national division
El objetivo de este estudio es analizar la frecuencia cardiaca (FC) y la percepción subjetiva del esfuerzo (RPE) en los entrenamientos de fútbol sala en jugadoras (25.42±4.42 años, 166.57±7.14 cm, 56.50±4.95 kg y 22.23±0.97 IMC) de un equipo de primera división de la liga nacional española. Se registraron, mediante monitores de ritmo cardiaco y la escala de Foster, ocho sesiones de entrenamiento de tipo técnico-táctico, físico y partidos modificados, distribuidas durante la mitad de la temporada. Los resultados de la FC máxima y media obtenida son 174.03±4.15 y 128.29±0.81 ppm en sesiones técnico-tácticas, 179.75±2.05 y 132±2.12 ppm en sesiones físicas, 180.99±1.06 y 133.63±5.52 ppm en partidos modificados, respectivamente. Habiendo diferencias significativas en los resultados de la FC máxima entre las sesiones técnico-tácticas y los partidos modificados (p=0.03) y entre la sesiones físicas y las técnico-tácticas (p=0.04). En cuanto a los resultados de la carga de entrenamiento y la RPE en las sesiones técnico-tácticas son 381.22±16.42 y 6.21±0.12 rpe, en las sesiones físicas 533.25±5.59 y 7.90±0.0 rpe, y en los partidos modificados 531.18±4.21 y 7.97±0.22 rpe, respectivamente. Encontrando diferencias significativas entre los resultados de la RPE y la magnitud de la carga de entrenamiento de las sesiones técnico-tácticas y los partidos modificados (p=0.00) y entre la sesiones físicas y las técnico-tácticas (p=0.00). Estos resultados muestran que la sesión de partido modificado obtiene unos valores de frecuencia cardiaca y de percepción subjetiva del esfuerzo mayor que las sesiones técnico-tácticas y las de trabajo físico.The aim of this study is to analyze the heart rate (HR) and the rating perception of effort (RPE) in training women futsal players (age 25.42±4.42 years, height 166.57±7.14 cm, body mass 56.50±4.95 kg and 22.23±0.97 BMI) from the first division team of the Spanish league. They were recorded by heart rate monitors and Foster scale, eight training sessions (technical-tactical, physiological and modified games). The results of maximum HR and average HR obtained are 174.03 ± 4.15 and 128.29 ± 0.81 ppm in technical-tactical sessions, 179.75 ± 2.05 and 2.12 ± 132 ppm in physiological sessions, and 180.99 ± 1.06 and 133.63 ± 5.52 ppm in modified games respectively. Having significant differences in the results of maximum heart rate between technical-tactical sessions and modified games (p = 0.03) and between the physiological and technical-tactical sessions (p = 0.04). As for the results of the training load and the RPE: are 381.22 ± 16.42 and 6.21 ± 0.12 in technical-tactical sessions; 533.25 ± 5.59 and 7.90 ± 0.0 in physiological sessions, and 531.18 ± 4.21 and 7.97 ± 0.22 in modified games. Finding significant differences between the results of the RPE and the magnitude of the training load technical-tactical sessions and modified games (p = 0.00) and between the physiological and technical-tactical sessions (p = 0.00). These results show that the modified games session obtains values of heart rate and the rating perception of effort greater than the technical-tactical and physiological work sessions
Historia y evolución de los deportes de pala y raqueta
Historia y evolución de los deportes de pala y raquet
Reglamento, instalaciones y materiales de padel
Análisis del reglamento, instalaciones y materiales de padel
- …