20 research outputs found

    Identification of beauty and charm quark jets at LHCb

    No full text
    Identification of jets originating from beauty and charm quarks is important for measuring Standard Model processes and for searching for new physics. The performance of algorithms developed to select b- and c-quark jets is measured using data recorded by LHCb from proton-proton collisions at root s = 7TeV in 2011 and at root s = 8TeV in 2012. The efficiency for identifying a b (c) jet is about 65%(25%) with a probability for misidentifying a light-parton jet of 0.3% for jets with transverse momentum pT > 20GeV and pseudorapidity 2 : 2 < eta < 4.2. The dependence of the performance on the pT and eta of the jet is also measured

    B flavour tagging using charm decays at the LHCb experiment

    No full text
    An algorithm is described for tagging the flavour content at production of neutral B mesons in the LHCb experiment. The algorithm exploits the correlation of the flavour of a B meson with the charge of a reconstructed secondary charm hadron from the decay of the other b hadron produced in the proton-proton collision. Charm hadron candidates are identified in a number of fully or partially reconstructed Cabibbo-favoured decay modes. The algorithm is calibrated on the self-tagged decay modes B+ -> J/psi K+ and B-0 -> J/psi K*(0) using 3.0fb(-1) of data collected by the LHCb experiment at pp centre-of-mass energies of 7TeV and 8TeV. Its tagging power on these samples of B -> J/psi X decays is (0.30 +/- 0.01 +/- 0.01) %

    Effective lifetime measurements in the B-s(0) -> K+K-, B-0 -> K+pi(-) and B-s(0) -> pi K-+(-) decays

    No full text
    Measurements of the effective lifetimes in the B-s(0) -> K+K-, B-0 -> K+pi(-) and B-s(0) -> pi K-+(-) decays are presented using 1.0 fb(-1)of pp collision data collected at a centre-of-mass energy of 7 TeV by the LHCb experiment. The analysis uses a data-driven approach to correct for the decay time acceptance. The measured effective lifetimes are tau(Bs0 -> K+K-) = 1.407 +/- 0.016 (stat) +/- 0.007 (syst) ps, tau(Bs0 -> K+pi-) = 1.524 +/- 0.011 (stat) +/- 0.004 (syst) ps, tau(Bs0 ->pi+K-) = 1.60 +/- 0.06 (stat) +/- 0.01 (syst) ps. This is the most precise determination to date of the effective lifetime in the B-s(0) -> K+K- decay and provides constraints on contributions from physics beyond the Standard Model to the B-s(0) mixing phase and the width difference Delta Gamma(s). (C) 2014 The Authors. Published by Elsevier B.V

    LHCb detector performance

    No full text
    The LHCb detector is a forward spectrometer at the Large Hadron Collider (LHC) at CERN. The experiment is designed for precision measurements of CP violation and rare decays of beauty and charm hadrons. In this paper the performance of the various LHCb sub-detectors and the trigger system are described, using data taken from 2010 to 2012. It is shown that the design criteria of the experiment have been met. The excellent performance of the detector has allowed the LHCb collaboration to publish a wide range of physics results, demonstrating LHCb's unique role, both as a heavy flavour experiment and as a general purpose detector in the forward region

    Precision luminosity measurements at LHCb

    No full text
    Measuring cross-sections at the LHC requires the luminosity to be determined accurately at each centre-of-mass energy root s. In this paper results are reported from the luminosity calibrations carried out at the LHC interaction point 8 with the LHCb detector for root s = 2.76, 7 and 8TeV (proton-proton collisions) and for root s(NN) = 5TeV (proton-lead collisions). Both the "van der Meer scan" and "beam-gas imaging" luminosity calibration methods were employed. It is observed that the beam density profile cannot always be described by a function that is factorizable in the two transverse coordinates. The introduction of a two-dimensional description of the beams improves significantly the consistency of the results. For proton-proton interactions at root s = 8TeV a relative precision of the luminosity calibration of 1.47% is obtained using van der Meer scans and 1.43% using beam-gas imaging, resulting in a combined precision of 1.12%. Applying the calibration to the full data set determines the luminosity with a precision of 1.16%. This represents the most precise luminosity measurement achieved so far at a bunched-beam hadron collider

    Observation of the decay (B)over-bar(s)(0) -> psi(2S)K+pi(-)

    No full text
    The decay (B) over bar (0)(s) -> psi(2S)K+pi(-) is observed using a data set corresponding to an integrated luminosity of 3.0 fb(-1) collected by the LHCb experiment in pp collisions at centre-of-mass energies of 7 and 8 TeV. The branching fraction relative to the B-0 -> psi(2S)K+pi(-) decay mode is measured to be B((B) over bar (0)(s) -> psi(2S)K+pi(-))/B(B-0 -> psi(2S)K+pi(-)) = 5.38 +/- 0.36 (stat) +/- 0.22 (syst) +/- 0.31 (f(s)/f(d)) %, where f(s)/f(d) indicates the uncertainty due to the ratio of probabilities for a b quark to hadronise into a B-s(0) or B-0 meson. Using an amplitude analysis, the fraction of decays proceeding via an intermediate K*(892)(0) meson is measured to be 0.645 +/- 0.049 (stat) +/- 0.049 (syst) and its longitudinal polarisation fraction is 0.524 +/- 0.056 (stat) +/- 0.029 (syst). The relative branching fraction for this component is determined to be B((B) over bar (0)(s) -> psi(2S)K*(892)(0))/B(B-0 -> psi(2S)K*(892)(0)) = 5.58 +/- 0.57 (stat) +/- 0.40 (syst) +/- 0.32 (f(s)/f(d)) %. In addition, the mass splitting between the B-s(0) and B-0 mesons is measured as M(B-s(0)) - M(B-0) = 87.45 +/- 0.44 (stat) +/- 0.09 (syst) MeV/c(2). (C) 2015 CERN for the benefit of the LHCb Collaboration. Published by Elsevier B.V. This is an open access article under the CC BY licens

    Observation of the B0→ρ0ρ0 decay from an amplitude analysis of B0→(π+π−)(π+π−) decays

    No full text
    Proton-proton collision data recorded in 2011 and 2012 by the LHCb experiment, corresponding to an integrated luminosity of 3.0 fb(-1), are analysed to search for the charmless B-0 -> rho(0)rho(0) decay. More than 600 B-0 -> (pi(+)pi(-))(pi(+)pi(-)) signal decays are selected and used to perform an amplitude, analysis, under the assumption of no CP violation in the decay, from which the B-0 -> rho(0)rho(0) decay is observed for the first time with 7.1 standard deviations significance. The fraction of B-0 -> rho(0)rho(0) decays yielding a longitudinally polarised final state is measured to be f(L) = 0.745(-0.058)(+0.048)(stat) +/- 0.034(syst). The B-0 -> rho(0)rho(0) branching fraction, using the B-0 -> phi K*(892)(0) decay as reference, is also reported as B(B-0 -> rho(0)rho(0)) = (0.94 +/- 0.17(stat) +/- 0.09(syst) +/- 0.06(BF)) x 10(-6). (C) 2015 CERN for the benefit of the LHCb Collaboration. Published by Elsevier B.V. This is an open access article under the CC BY licens

    Measurement of the Xi(-)(b) and Omega(-)(b) baryon lifetimes

    No full text
    Using a data sample of pp collisions corresponding to an integrated luminosity of 3 fb(-1), the Xi(-)(b) and Omega(-)(b) baryons are reconstructed in the Xi(-)(b) -> J/psi Xi(-) and Omega(-)(b) -> J/psi Omega(-) decay modes and their lifetimes measured to be tau(Xi(-)(b)) = 1.55(-0.09)(+0.10) (stat) +/- 0.03 (syst) ps, tau(Omega(-)(b)) = 1.54(-0.21)(+0.26) (stat) +/- 0.05 (syst) ps. These are the most precise determinations to date. Both measurements are in good agreement with previous experimental results and with theoretical predictions. (C) 2014 The Authors. Published by Elsevier B.V

    Measurement of the CP-violating phase phi(s) in (B)over-bar(s)(0) -> J / psi pi(+)pi(-) decays

    No full text
    The mixing-induced CP-violating phase phi(s) in B-s(0) and (B) over bar (0)(s) decays is measured using the J / psi pi(+)pi(-) final state in data, taken from 3 fb(-1) of integrated luminosity, collected with the LHCb detector in 7 and 8 TeV centre-of-mass pp collisions at the LHC. A time-dependent flavour-tagged amplitude analysis, allowing for direct CP violation, yields a value for the phase phi(s) = 70 +/- 68 +/- 8 mrad. This result is consistent with the Standard Model expectation and previous measurements. (C) 2014 The Authors. Published by Elsevier B.V

    Measurement of the track reconstruction efficiency at LHCb

    No full text
    The determination of track reconstruction efficiencies at LHCb using J/psi -> mu(+)mu(-) decays is presented. Efficiencies above 95% are found for the data taking periods in 2010, 2011, and 2012. The ratio of the track reconstruction efficiency of muons in data and simulation is compatible with unity and measured with an uncertainty of 0.8% for data taking in 2010, and at a precision of 0.4% for data taking in 2011 and 2012. For hadrons an additional 1.4% uncertainty due to material interactions is assumed. This result is crucial for accurate cross section and branching fraction measurements in LHCb
    corecore