1,684 research outputs found

    High-frequency spinal cord stimulation at 10 kHz for the treatment of painful diabetic neuropathy: design of a multicenter, randomized controlled trial (SENZA-PDN)

    Get PDF
    Background: Painful diabetic neuropathy (PDN), a debilitating and progressive chronic pain condition that significantly impacts quality of life, is one of the common complications seen with long-standing diabetes mellitus. Neither pharmacological treatments nor low-frequency spinal cord stimulation (SCS) has provided significant and long-term pain relief for patients with PDN. This study aims to document the value of 10-kHz SCS in addition to conventional medical management (CMM) compared with CMM alone in patients with refractory PDN. Methods: In a prospective, multicenter, randomized controlled trial (SENZA-PDN), 216 subjects with PDN will be assigned 1:1 to receive 10-kHz SCS combined with CMM or CMM alone after appropriate institutional review board approvals and followed for 24 months. Key inclusion criteria include (1) symptoms of PDN for at least 12 months, (2) average pain intensity of at least 5 cm—on a 0- to 10-cm visual analog scale (VAS)—in the lower limbs, and (3) an appropriate candidate for SCS. Key exclusion criteria include (1) large or gangrenous ulcers or (2) average pain intensity of at least 3 cm on VAS in the upper limbs or both. Along with pain VAS, neurological assessments, health-related quality of life, sleep quality, and patient satisfaction will be captured. The primary endpoint comparing responder rates (≥50% pain relief) and safety rates between the treatment groups will be assessed at 3 months. Several secondary endpoints will also be reported on. Discussion: Enrollment commenced in 2017 and was completed in 2019. This study will help to determine whether 10-kHz SCS improves clinical outcomes and health-related quality of life and is a cost-effective treatment for PDN that is refractory to CMM

    Characterization and Quantification of Livestock Odorants using Sorbent Tube Sampling and Thermal Desorption coupled with Multidimensional Gas Chromatography–Mass Spectrometry–Olfactometry (TD-MDGC-MS-O)

    Get PDF
    Characterization and quantification of livestock odorants is one of the most challenging analytical tasks because odor-causing gases are very reactive, polar and often present at very low concentrations in a complex matrix of less important or irrelevant gases. The objectives of this research is to develop a novel analytical method for characterization of the livestock odorants including their odor character, odor intensity, and hedonic tone and further quantitative analysis of the key odorants responsible for livestock odor emissions. Sorbent tubes packed with Tenax TA were employed for sampling. The automated one-step thermal desorption coupled with multidimensional gas chromatography-mass spectrometry-olfactometry system was developed for simultaneous chemical and odor analysis. Fifteen odorants identified from different livestock species operations are quantified. In addition, odor character, odor intensity and hedonic tone associated with each of the target compounds are also analyzed. The method developed in this research is being used on a multistate, multispecies project focused on quantifying odor and chemical analysis of odor

    Odor and Odorous Chemical Emissions from Animal Buildings: Part 6. Odor Activity Value

    Get PDF
    There is a growing concern with air and odor emissions from agricultural facilities. A supplementary research project was conducted to complement the U.S. National Air Emissions Monitoring Study (NAEMS). The overall goal of the project was to establish odor and chemical emission factors for animal feeding operations. The study was conducted over a 17-month period at two freestall dairies, one swine sow farm, and one swine finisher facility. Samples from a representative exhaust airstream at each barn were collected in 10 L Tedlar bags and analyzed by trained human panelists using dynamic triangular forced-choice olfactometry. Samples were simultaneously analyzed for 20 odorous compounds (acetic acid, propanoic acid, butyric acid, isobutyric acid, valeric acid, isovaleric acid, hexanoic acid, heptanoic acid, guaiacol, phenol, 4-methylphenol, 4-ethylphenol, 2-aminoacetophenone, indole, skatole, dimethyl disulfide, diethyl disulfide, dimethyl trisulfide, hydrogen sulfide, and ammonia). In this article, which is part 6 of a six-part series summarizing results of the project, we investigate the correlations between odor concentrations and odor activity value (OAV), defined as the concentration of a single compound divided by the odor threshold for that compound. The specific objectives were to determine which compounds contributed most to the overall odor emanating from swine and dairy buildings, and develop equations for predicting odor concentration based on compound OAVs. Single-compound odor thresholds (SCOT) were statistically summarized and analyzed, and OAVs were calculated for all compounds. Odor concentrations were regressed against OAV values using multivariate regression techniques. Both swine sites had four common compounds with the highest OAVs (ranked high to low: hydrogen sulfide, 4-methylphenol, butyric acid, isovaleric acid). The dairy sites had these same four compounds in common in the top five, and in addition diethyl disulfide was ranked second at one dairy site, while ammonia was ranked third at the other dairy site. Summed OAVs were not a good predictor of odor concentration (R2 = 0.16 to 0.52), underestimating actual odor concentrations by 2 to 3 times. Based on the OAV and regression analyses, we conclude that hydrogen sulfide, 4-methylphenol, isovaleric acid, ammonia, and diethyl disulfide are the most likely contributors to swine odor, while hydrogen sulfide, 4-methyl phenol, butyric acid, and isovaleric acid are the most likely contributors to dairy odors

    Odor and Odorous Chemical Emissions from Animal Buildings: Part 4—Correlations Between Sensory and Chemical Measurements

    Get PDF
    This study supplemented the National Air Emissions Monitoring Study (NAEMS) by making comprehensive measurements, over a full calendar year, of odor emissions from five swine and four dairy rooms/buildings (subset of the total number of buildings monitored for the NAEMS project). The measurements made in this project included both standard human sensory measurements using dynamic forced-choice olfactometer and a novel chemical analysis technique for odorous compounds found in these emissions. Odor and hydrogen sulfide (H2S) and ammonia (NH3) concentrations for all dairy and swine buildings had a statistically significant correlation. A higher number of correlations between odor and volatile organic compounds (VOCs) were found for the five swine rooms/buildings (two rooms in a pig finishing barn, two sow gestation barns, and a farrowing room) compared to the four dairy buildings. Phenol and 4-methyl phenol (p-cresol) concentrations were well correlated (R2\u3e50%) with odor concentrations in the five swine rooms/buildings but not significantly correlated in the four dairy buildings

    Odor and Odorous Chemical Emissions from Animal Buildings: Part 5. Simultaneous Chemical and Sensory Analysis with Gas Chromatography-Mass Spectrometry-Olfactometry

    Get PDF
    Simultaneous chemical and sensory analyses using gas chromatography-mass spectrometry-olfactometry (GC-MS-O) for air samples collected at barn exhaust fans were used for quantification and ranking of the odor impacts of target odorous gases. Fifteen target odorous VOCs (odorants) were selected. Air samples were collected at dairy barns in Wisconsin and Indiana and at swine barns in Iowa and Indiana over a one-year period. The livestock facilities with these barns participated in the National Air Emissions Monitoring Study (NAEMS). Gas concentrations, odor character and intensity, hedonic tone, and odor peak area of the target odorants in air samples were measured simultaneously with GC-MS-O. The four individual odorants emitted from both dairy and swine sites with the largest odor impacts (measured as odor activity value, OAV) were 4-methyl phenol, butanoic acid, 3-methyl butanoic acid, and indole. The total odor (limited to target VOCs and referred to as the measured concentrations, odor intensities, and OAVs) emitted from the swine sites was generally greater than that from the dairy sites. The Weber-Fechner law was used to correlate measured odor intensities with chemical concentrations. Odorants with higher mean OAV followed the Weber-Fechner law much better than odorants with lower mean OAV. The correlations between odor intensities and chemical concentrations were much better for the swine sites (typically p \u3c 0.05 and R2 = 0.16 to 0.51) than for the dairy sites (typically p \u3e 0.05 and R2 \u3c 0.15). Linking specific gases to odor could assist in the development and evaluation of odor mitigation technologies for solving livestock odor nuisance problems

    Odor and Odorous Chemical Emissions from Animal Buildings: Part 1. Project Overview, Collection Methods, and Quality Control

    Get PDF
    Livestock facilities have historically generated public concerns due to their emissions of odorous air and various chemical pollutants. Odor emission factors and identification of principal odorous chemicals are needed to better understand the problem. Applications of odor emission factors include inputs to odor setback models, while chemical emission factors may be compared with regulation thresholds as a means of demonstrating potential health impacts. A companion study of the National Air Emissions Monitoring Study (NAEMS) included measurements necessary for establishing odor and chemical emission factors for confined animal feeding operations. This additional investigation was conducted by the University of Minnesota, Iowa State University, West Texas A&M Agri-Life Center, and Purdue University. The objectives were to (1) determine odor emission rates across swine and dairy facilities and seasons using common protocols and standardized olfactometry methods, (2) develop a chemical library of the most significant odorants, and (3) correlate the chemical library with the olfactometry results. This document describes the sampling and quality assurance methods used in the measurement and evaluation of odor and chemical samples collected at two freestall dairy farms, one sow (gestation/farrowing) facility, and one finishing pig site. Odor samples were collected in Tedlar bags and chemical samples were collected in sorbent tubes at barn inlet and exhaust locations using the NAEMS multiple-location gas sampling systems. Quality assurance protocols included interlaboratory comparison tests, which were evaluated to identify variations between olfactometry labs. While differences were observed, the variations among the labs and samples appeared random and the collected odor data were considered reliable at a 0.5% level of statistical significance. Overall, the study took advantage of groundbreaking opportunities to collect and associate simultaneous odor and chemical information from swine and dairy buildings while maintaining accordance with standard methods and comparability across laboratories

    Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV

    Get PDF
    The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8  TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum
    corecore